147 research outputs found

    Cholesterol Perturbs Lipid Bilayers Non-Universally

    Get PDF

    Structural Determinants of Water Permeability through the Lipid Membrane

    Get PDF
    Despite intense study over many years, the mechanisms by which water and small nonelectrolytes cross lipid bilayers remain unclear. While prior studies of permeability through membranes have focused on solute characteristics, such as size, polarity, and partition coefficient in hydrophobic solvent, we focus here on water permeability in seven single component bilayers composed of different lipids, five with phosphatidylcholine headgroups and different chain lengths and unsaturation, one with a phosphatidylserine headgroup, and one with a phosphatidylethanolamine headgroup. We find that water permeability correlates most strongly with the area/lipid and is poorly correlated with bilayer thickness and other previously determined structural and mechanical properties of these single component bilayers. These results suggest a new model for permeability that is developed in the accompanying theoretical paper in which the area occupied by the lipid is the major determinant and the hydrocarbon thickness is a secondary determinant. Cholesterol was also incorporated into DOPC bilayers and X-ray diffuse scattering was used to determine quantitative structure with the result that the area occupied by DOPC in the membrane decreases while bilayer thickness increases in a correlated way because lipid volume does not change. The water permeability decreases with added cholesterol and it correlates in a different way from pure lipids with area per lipid, bilayer thickness, and also with area compressibility

    Selective Interaction of Colistin with Lipid Model Membranes

    Get PDF
    Although colistin's clinical use is limited due to its nephrotoxicity, colistin is considered to be an antibiotic of last resort because it is used to treat patients infected with multidrug-resistant bacteria. In an effort to provide molecular details about colistin's ability to kill Gram-negative (G(−)) but not Gram-positive (G(+)) bacteria, we investigated the biophysics of the interaction between colistin and lipid mixtures mimicking the cytoplasmic membrane of G(+), G(−) bacteria as well as eukaryotic cells. Two different models of the G(−) outer membrane (OM) were assayed: lipid A with two deoxy-manno-octulosonyl sugar residues, and Escherichia coli lipopolysaccharide mixed with dilaurylphosphatidylglycerol. We used circular dichroism and x-ray diffuse scattering at low and wide angle in stacked multilayered samples, and neutron reflectivity of single, tethered bilayers mixed with colistin. We found no differences in secondary structure when colistin was bound to G(−) versus G(+) membrane mimics, ruling out a protein conformational change as the cause of this difference. However, bending modulus KC perturbation was quite irregular for the G(−) inner membrane, where colistin produced a softening of the membranes at an intermediate lipid/peptide molar ratio but stiffening at lower and higher peptide concentrations, whereas in G(+) and eukaryotic mimics there was only a slight softening. Acyl chain order in G(−) was perturbed similarly to KC. In G(+), there was only a slight softening and disordering effect, whereas in OM mimics, there was a slight stiffening and ordering of both membranes with increasing colistin. X-ray and neutron reflectivity structural results reveal colistin partitions deepest to reach the hydrocarbon interior in G(−) membranes, but remains in the headgroup region in G(+), OM, and eukaryotic mimics. It is possible that domain formation is responsible for the erratic response of G(−) inner membranes to colistin and for its deeper penetration, which could increase membrane permeability.Fil: Dupuy, Fernando Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina. University of Carnegie Mellon; Estados UnidosFil: Pagano, Isabella. University of Carnegie Mellon; Estados UnidosFil: Andenoro, Kathryn. University of Carnegie Mellon; Estados UnidosFil: Peralta, Maria Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Ciencias de la Salud. Universidad Nacional de Córdoba. Instituto de Investigaciones en Ciencias de la Salud; Argentina. University of Carnegie Mellon; Estados UnidosFil: Elhady, Yasmene. University of Carnegie Mellon; Estados UnidosFil: Heinrich, Frank. University of Carnegie Mellon; Estados UnidosFil: Tristram-nagle, Stephanie. University of Carnegie Mellon; Estados Unido

    Elastic behavior of model membranes with antimicrobial peptides depends on lipid specificity and d-enantiomers

    Get PDF
    In an effort to provide new treatments for the global crisis of bacterial resistance to current antibiotics, we have used a rational approach to design several new antimicrobial peptides (AMPs). The present study focuses on 24-mer WLBU2 and its derivative, D8, with the amino acid sequence, RRWVRRVRRWVRRVVRVVRRWVRR. In D8, all of the valines are the Denantiomer. We use X-ray low- and wide-angle diffuse scattering data to measure elasticity and lipid chain order. We show a good correlation between in vitro bacterial killing efficiency and both bending and chain order behavior in bacterial lipid membrane mimics; our results suggest that AMP-triggered domain formation could be the mechanism of bacterial killing in both Grampositive and Gram-negative bacteria. In red blood cell lipid mimics, D8 stiffens and orders the membrane, while WLBU2 softens and disorders it, which correlate with D8’s harmless vs. WLBU2’s toxic behavior in hemolysis tests. These results suggest that elasticity and chain order behavior can be used to predict mechanisms of bactericidal action and toxicity of new AMPs.Fil: Kumagai, Akari. University of Carnegie Mellon; Estados UnidosFil: Dupuy, Fernando Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto Superior de Investigaciones Biológicas. Grupo de Investigación y Desarrollo del Noroeste Argentino | Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas. Grupo de Investigación y Desarrollo del Noroeste Argentino; ArgentinaFil: Arsov, Zoran. Jožef Stefan Institute; EsloveniaFil: Elhady, Yasmene. University of Carnegie Mellon; Estados UnidosFil: Moody, Diamond. University of Carnegie Mellon; Estados UnidosFil: Erns, Robert. University of Maryland; Estados UnidosFil: Deslouches, Berthony. University of Pittsburgh; Estados UnidosFil: Montelaro, Ronald. University of Pittsburgh; Estados UnidosFil: Di, Yuanpu Peter. University of Pittsburgh; Estados UnidosFil: Tristram-Nagle, Stephanie. University of Carnegie Mellon; Estados Unido

    Synergistic Biophysical Techniques Reveal Structural Mechanisms of Engineered Cationic Antimicrobial Peptides in Lipid Model Membranes

    Get PDF
    In the quest for new antibiotics, two novel engineered cationic antimicrobial peptides (eCAPs) have been rationally designed. WLBU2 and D8 (all 8 valines are the d-enantiomer) efficiently kill both Gram-negative and -positive bacteria, but WLBU2 is toxic and D8 nontoxic to eukaryotic cells. We explore protein secondary structure, location of peptides in six lipid model membranes, changes in membrane structure and pore evidence. We suggest that protein secondary structure is not a critical determinant of bactericidal activity, but that membrane thinning and dual location of WLBU2 and D8 in the membrane headgroup and hydrocarbon region may be important. While neither peptide thins the Gram-negative lipopolysaccharide outer membrane model, both locate deep into its hydrocarbon region where they are primed for self-promoted uptake into the periplasm. The partially α-helical secondary structure of WLBU2 in a red blood cell (RBC) membrane model containing 50 % cholesterol, could play a role in destabilizing this RBC membrane model causing pore formation that is not observed with the D8 random coil, which correlates with RBC hemolysis caused by WLBU2 but not by D8.Fil: Heinrich, Frank. University of Carnegie Mellon; Estados UnidosFil: Salyapongse, Aria. University of Carnegie Mellon; Estados UnidosFil: Kumagai, Akari. University of Carnegie Mellon; Estados UnidosFil: Dupuy, Fernando Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; ArgentinaFil: Shukla, Karpur. University of Carnegie Mellon; Estados UnidosFil: Penk, Anja. Universitat Leipzig; AlemaniaFil: Huster, Daniel. Universitat Leipzig; AlemaniaFil: Ernst, Robert K.. University of Maryland; Estados UnidosFil: Pavlova, Anna. Georgia Institute Of Techology. School Of Chemical & Biomolecular Engineering; Estados UnidosFil: Gumbart, James C.. Georgia Institute Of Techology. School Of Chemical & Biomolecular Engineering; Estados UnidosFil: Deslouches, Berthony. University of Pittsburgh; Estados UnidosFil: Di, Y. Peter. University of Pittsburgh; Estados UnidosFil: Tristram-Nagle, Stephanie. University of Carnegie Mellon; Estados Unido

    Preparation of oriented, fully hydrated lipid samples for structure determination using X-ray scattering.

    No full text
    This chapter describes a method of sample preparation called "the rock and roll method," which is basically a solvent evaporation technique with controlled manual sample movement during evaporation of solvent from lipid/solvent mixtures that produces well-oriented thick stacks of about 2000 lipid bilayers. Many lipid types have been oriented using different solvent mixtures that balance solubilization of the lipid with uniform deposition of the lipid solution onto solid substrates. These well-oriented thick stacks are then ideal samples for collection of both X-ray diffraction data in the gel phase and X-ray diffuse scattering data in the fluid phase of lipids. The degree of orientation is determined using visual inspection, polarizing microscopy, and a mosaic spread X-ray experiment. Atomic force microscopy is used to compare samples prepared using the rock and roll method with those prepared by spin-coating, which produces well-oriented but less homogeneous lipid stacks. These samples can be fully hydrated through the vapor provided that the hydration chamber has excellent temperature and humidity control.</p

    Use of X-Ray and Neutron Scattering Methods with Volume Measurements to Determine Lipid Bilayer Structure and Number of Water Molecules/Lipid.

    No full text
    <p>In this chapter I begin with a historical perspective of membrane models, starting in the early twentieth century. As these membrane models evolved, so did experiments to characterize the structure and water content of purified lipid bilayers. The wide-spread use of the X-ray gravimetric, or Luzzati method, is critically discussed. The main motivation of the gravimetric technique is to determine the number of water molecules/lipid, n(W), and then derive other important structural quantities, such as area/lipid, A(L). Subsequent experiments from the Nagle/Tristram-Nagle laboratory using X-ray and neutron scattering, first determine A(L) and then calculate n(W), using molecular lipid V(L) and water V(W) volumes. This chapter describes the details of our volume experiments to carefully measure V(L). Our results also determine n(W)', the steric water associated with the lipid headgroup, and how our calculated value compares to many literature values of tightly-associated headgroup water.</p
    • …
    corecore