6 research outputs found

    Examining Wing Length–Abundance Relationships and Pyrethroid Resistance Mutations among Aedes albopictus in a Rapidly Growing Urban Area with Implications for Mosquito Surveillance and Control

    No full text
    Aedes albopictus is a cosmopolitan mosquito species capable of transmitting arboviruses such as dengue, chikungunya, and Zika. To control this and similar species, public and private entities often rely on pyrethroid insecticides. In this study, we screened Ae. albopictus collected from June to August 2017 in Mecklenburg County, a rapidly growing urban area of North Carolina, for mutations conferring pyrethroid resistance and examined spatiotemporal patterns of specimen size as measured by wing length, hypothesizing that size variation could be closely linked to local abundance, making this easily measured trait a useful surveillance proxy. The genetic screening results indicated that pyrethroid resistance alleles are not present in this population, meaning that this population is likely to be susceptible to this commonly used insecticide class. We detected no significant associations between size and abundance-related factors, indicating that wing-size is not a useful proxy for abundance, and thus not useful to surveillance in this capacity. However, mosquitoes collected in June were significantly larger than July or August, which may result from meteorological conditions, suggesting that short-term weather cues may modulate morphological traits, which could then affect local fecundity and virus transmission dynamics, as previously reported

    Abundance and distribution of sylvatic dengue virus vectors in three different land cover types in Sarawak, Malaysian Borneo

    No full text
    Abstract Background Mosquito-borne dengue virus (DENV) is maintained in a sylvatic, enzootic cycle of transmission between canopy-dwelling non-human primates and Aedes mosquitoes in Borneo. Sylvatic DENV can spill over into humans living in proximity to forest foci of transmission, in some cases resulting in severe dengue disease. The most likely vectors of such spillover (bridge vectors) in Borneo are Ae. albopictus and Ae. niveus. Borneo is currently experiencing extensive forest clearance. To gauge the effect of this change in forest cover on the likelihood of sylvatic DENV spillover, it is first necessary to characterize the distribution of bridge vectors in different land cover types. In the current study, we hypothesized that Ae. niveus and Ae. albopictus would show significantly different distributions in different land cover types; specifically, we predicted that Ae. niveus would be most abundant in forests whereas Ae. albopictus would have a more even distribution in the landscape. Results Mosquitoes were collected from a total of 15 sites using gravid traps and a backpack aspirator around Kampong Puruh Karu, Sarawak, Malaysian Borneo, where sylvatic DENV spillover has been documented. A total of 2447 mosquitoes comprising 10 genera and 4 species of Aedes, were collected over the three years, 2013, 2014 and 2016, in the three major land cover types in the area, homestead, agriculture and forest. Mosquitoes were identified morphologically, pooled by species and gender, homogenized, and subject to DNA barcoding of each Aedes species and to arbovirus screening. As predicted, Ae. niveus was found almost exclusively in forests whereas Ae. albopictus was collected in all land cover types. Aedes albopictus was significantly (P = 0.04) more abundant in agricultural fields than forests. Sylvatic DENV was not detected in any Aedes mosquito pools, however genomes of 14 viruses were detected using next generation sequencing. Conclusions Land cover type affects the abundance and distribution of the most likely bridge vectors of sylvatic DENV in Malaysia Borneo. Conversion of forests to agriculture will likely decrease the range and abundance of Ae. niveus but enhance the abundance of Ae. albopictus

    Seasonal and geographic variation in insecticide resistance in Aedes aegypti in southern Ecuador

    No full text
    Insecticide resistance (IR) can undermine efforts to control vectors of public health importance. Aedes aegypti is the main vector of resurging diseases in the Americas such as yellow fever and dengue, and recently emerging chikungunya and Zika fever, which have caused unprecedented epidemics in the region. Vector control remains the primary intervention to prevent outbreaks of Aedes-transmitted diseases. In many high-risk regions, like southern Ecuador, we have limited information on IR. In this study, Ae. aegypti IR was measured across four cities in southern Ecuador using phenotypic assays and genetic screening for alleles associated with pyrethroid IR. Bottle bioassays showed significant inter-seasonal variation in resistance to deltamethrin, a pyrethroid commonly used by the Ministry of Health, and alpha-cypermethrin, as well as between-city differences in deltamethrin resistance. There was also a significant difference in phenotypic response to the organophosphate, Malathion, between two cities during the second sampling season. Frequencies of the resistant V1016I genotype ranged from 0.13 to 0.68. Frequencies of the resistant F1534C genotype ranged from 0.63 to 1.0, with sampled populations in Machala and Huaquillas at fixation for the resistant genotype in all sampled seasons. In Machala and Portovelo, there were statistically significant inter-seasonal variation in genotype frequencies for V1016I. Resistance levels were highest in Machala, a city with hyperendemic dengue transmission and historically intense insecticide use. Despite evidence that resistance alleles conferred phenotypic resistance to pyrethroids, there was not a precise correspondence between these indicators. For the F1534C gene, 17.6% of homozygous mutant mosquitoes and 70.8% of heterozygotes were susceptible, while for the V1016I gene, 45.6% homozygous mutants and 55.6% of heterozygotes were susceptible. This study shows spatiotemporal variability in IR in Ae. aegypti populations in southern coastal Ecuador, and provides an initial examination of IR in this region, helping to guide vector control efforts for Ae. aegypti

    Data From: The 1014F knockdown resistance mutation is not a strong correlate of phenotypic resistance to pyrethroids in Florida populations of <i>Culex quinquefasciatus</i>

    No full text
    Culex quinquefasciatus is an important target for vector control because of its ability to transmit pathogens that cause disease. Most populations are resistant to pyrethroids and often to organophosphates, the two most common classes of active ingredients used by public health agencies. A knockdown resistance (kdr) mutation, resulting in a change from a leucine to phenylalanine in the voltage gated sodium channel, is one mechanism contributing to the pyrethroid resistant phenotype. Enzymatic resistance has also been shown to play a very important role. Recent studies have shown strong resistance in populations even when kdr is relatively low which indicates factors other than kdr may be larger contributors to resistance. In this study, we examined on a statewide scale (over 70 populations), the strength of the correlation between resistance in the CDC bottle bioassay and the kdr genotypes and allele frequencies. Spearman correlation analysis showed only moderate (-0.51) and weak (-0.29) correlation between the kdr genotype and permethrin and deltamethrin respectively. The frequency of the kdr allele was an even weaker correlate. These results indicate, in contrast to Aedes aegypti, assessing kdr in populations of Culex quinquefasciatus is not a good surrogate for phenotypic resistance testing.</p

    Loxodonta Localizer: a software tool for inferring the provenance of African elephants and their ivory using mitochondrial DNA.

    Get PDF
    Illegal hunting is a major threat to the elephants of Africa, with more elephants killed by poachers than die from natural causes. DNA from tusks has been used to infer the source populations for confiscated ivory, relying on nuclear genetic markers. However, mitochondrial DNA (mtDNA) sequences can also provide information on the geographic origins of elephants due to female elephant philopatry. Here, we introduce the Loxodonta Localizer (LL; www.loxodontalocalizer.org), an interactive software tool that uses a database of mtDNA sequences compiled from previously published studies to provide information on the potential provenance of confiscated ivory. A 316 bp control region sequence, which can be readily generated from DNA extracted from ivory, is used as a query. The software generates a listing of haplotypes reported among 1917 African elephants in 24 range countries, sorted in order of similarity to the query sequence. The African locations from which haplotype sequences have been previously reported are shown on a map. We demonstrate examples of haplotypes reported from only a single locality or country, examine the utility of the program in identifying elephants from countries with varying degrees of sampling, and analyze batches of confiscated ivory. The LL allows for the source of confiscated ivory to be assessed within days, using widely available molecular methods that do not depend on a particular platform or laboratory. The program enables identification of potential regions or localities from which elephants are being poached, with capacity for rapid identification of populations newly or consistently targeted by poachers
    corecore