30 research outputs found
Oncogenic deubiquitination controls tyrosine kinase signaling and therapy response in acute lymphoblastic leukemia
Dysregulation of kinase signaling pathways favors tumor cell survival and therapy resistance in cancer. Here, we reveal a posttranslational regulation of kinase signaling and nuclear receptor activity via deubiquitination in T cell acute lymphoblastic leukemia (T-ALL). We observed that the ubiquitin-specific protease 11 (USP11) is highly expressed and associates with poor prognosis in T-ALL. USP11 ablation inhibits leukemia progression in vivo, sparing normal hematopoiesis. USP11 forms a complex with USP7 to deubiquitinate the oncogenic lymphocyte cell-specific protein-tyrosine kinase (LCK) and enhance its activity. Impairment of LCK activity leads to increased glucocorticoid receptor (GR) expression and glucocorticoids sensitivity. Genetic knockout of USP7 improved the antileukemic efficacy of glucocorticoids in vivo. The transcriptional activation of GR target genes is orchestrated by the deubiquitinase activity and mediated via an increase in enhancer-promoter interaction intensity. Our data unveil how dysregulated deubiquitination controls leukemia survival and drug resistance, suggesting previously unidentified therapeutic combinations toward targeting leukemia
Loss of Heterozygosity at the CYP2D6 Locus in Breast Cancer: Implications for Germline Pharmacogenetic Studies
Controversy exists regarding the impact of CYP2D6 genotype on tamoxifen responsiveness. We examined loss of heterozygosity (LOH) at the CYP2D6 locus and determined its impact on genotyping error when tumor tissue is used as a DNA source
Oncogenic deubiquitination controls tyrosine kinase signaling and therapy response in acute lymphoblastic leukemia
Dysregulation of kinase signaling pathways favors tumor cell survival and therapy resistance in cancer. Here, we reveal a posttranslational regulation of kinase signaling and nuclear receptor activity via deubiquitination in T cell acute lymphoblastic leukemia (T-ALL).We observed that the ubiquitin-specific protease 11 (USP11) is highly expressed and associates with poor prognosis in T-ALL. USP11 ablation inhibits leukemia progression in vivo, sparing normal hematopoiesis. USP11 forms a complex with USP7 to deubiquitinate the oncogenic lymphocyte cell-specific protein-tyrosine kinase (LCK) and enhance its activity. Impairment of LCK activity leads to increased glucocorticoid receptor (GR) expression and glucocorticoids sensitivity. Genetic knockout of USP7 improved the antileukemic efficacy of glucocorticoids in vivo. The transcriptional activation of GR target genes is orchestrated by the deubiquitinase activity and mediated via an increase in enhancer-promoter interaction intensity. Our data unveil how dysregulated deubiquitination controls leukemia survival and drug resistance, suggesting previously unidentified therapeutic combinations toward targeting leukemia
Pharmacokinetics of dacarbazine (DTIC) in pregnancy.
PURPOSE: The purpose of this report is to describe, for the first time, the pharmacokinetics of dacarbazine (DTIC) and its metabolites [5-[3-methyl-triazen-1-yl]-imidazole-4-carboxamide (MTIC), 5-[3-hydroxymethyl-3-methyl-triazen-1-yl]-imidazole-4-carboxamide (HMMTIC) and 5-aminoimidazole-4-carboxamide (AIC)] during pregnancy (n = 2) and postpartum (n = 1).
METHODS: Non-compartmental DTIC, MTIC, HMMTIC, and AIC pharmacokinetics (PK) were estimated in one case at 29 week gestation and 18 day postpartum and a second case at 32 week gestation, in women receiving DTIC in combination with doxorubicin, bleomycin, and vinblastine for treatment of Hodgkin\u27s lymphoma. Drug concentrations were measured by HPLC.
RESULTS: In the subject who completed both pregnancy and postpartum study days, DTIC area under the concentration-time curve (AUC) was 27% higher and metabolite AUCs were lower by 27% for HMMTIC, 38% for MTIC, and 83% of AIC during pregnancy compared to postpartum. At 7 and 9 year follow-up, both subjects were in remission of their Hodgkin\u27s lymphoma.
CONCLUSIONS: Based on these two case reports, pregnancy appears to decrease the metabolism of the pro-drug dacarbazine, likely through inhibition of CYP1A2 activity. Lower concentrations of active metabolites and decreased efficacy may result, although both these subjects experienced long-term remission of their Hodgkin\u27s lymphoma
Gemcitabine and Irinotecan as First-Line Therapy for Carcinoma of Unknown Primary: Results of a Multicenter Phase II Trial
<div><p>Metastatic carcinoma of unknown primary (CUP) has a very poor prognosis, and no standard first-line therapy currently exists. Here, we report the results of a phase II study utilizing a combination of gemcitabine and irinotecan as first-line therapy. Treatment was with gemcitabine 1000 mg/m<sup>2</sup> and irinotecan 75 mg/m<sup>2</sup> weekly times four on a six week cycle (Cohort I). Due to excessive toxicity, the dose and schedule were modified as follows: gemcitabine 750 mg/m<sup>2</sup> and irinotecan 75 mg/m<sup>2</sup> given weekly times three on a four week cycle (Cohort II). The primary endpoint was the confirmed response rate (CR + PR). Secondary endpoints consisted of adverse events based upon the presence or absence of the UDP glucuronosyltransferase 1 family, polypeptide A1*28 (UGT1A1*28) polymorphism, time to progression, and overall survival. Thirty-one patients were enrolled with a median age of 63 (range: 38–94), and 26 patients were evaluable for efficacy. Significant toxicity was observed in Cohort 1, characterized by 50% (7/14) patients experiencing a grade 4+ adverse event, but not in cohort II. The confirmed response rate including patients from both cohorts was 12% (95% CI: 2–30%), which did not meet the criteria for continued enrollment. Overall median survival was 7.2 months (95% CI: 4.0 to 11.6) for the entire cohort but notably longer in cohort II than in cohort I (9.3 months (95% CI: 4.1 to 12.1) versus 4.0 months (95% CI: 2.2 to 15.6)). Gemcitabine and irinotecan is not an active combination when used as first line therapy in patients with metastatic carcinoma of unknown primary. Efforts into developing novel diagnostic and therapeutic approaches remain important for improving the outlook for this heterogeneous group of patients.</p> <h3>Trial Registration</h3><p>ClinicalTrials.gov <a href="http://clinicaltrials.gov/ct2/show/NCT00066781">NCT00066781</a></p> </div
Recommended from our members
Cancer-specific CTCF binding facilitates oncogenic transcriptional dysregulation
Abstract Background The three-dimensional genome organization is critical for gene regulation and can malfunction in diseases like cancer. As a key regulator of genome organization, CCCTC-binding factor (CTCF) has been characterized as a DNA-binding protein with important functions in maintaining the topological structure of chromatin and inducing DNA looping. Among the prolific binding sites in the genome, several events with altered CTCF occupancy have been reported as associated with effects in physiology or disease. However, there is no hitherto a comprehensive survey of genome-wide CTCF binding patterns across different human cancers. Results To dissect functions of CTCF binding, we systematically analyze over 700 CTCF ChIP-seq profiles across human tissues and cancers and identify cancer-specific CTCF binding patterns in six cancer types. We show that cancer-specific lost and gained CTCF binding events are associated with altered chromatin interactions in patient samples, but not always with DNA methylation changes or sequence mutations. While lost bindings primarily occur near gene promoters, most gained CTCF binding events are induced by oncogenic transcription factors and exhibit enhancer activities. We validate these findings in T-cell acute lymphoblastic leukemia and show that oncogenic NOTCH1 induces specific CTCF binding and they cooperatively activate expression of target genes, indicating transcriptional condensation phenomena. Conclusions Cancer-specific CTCF binding events are not always associated with DNA methylation changes or mutations, but can be induced by other transcription factors to regulate oncogenic gene expression. Our results substantiate CTCF binding alteration as a functional epigenomic signature of cancer