30 research outputs found

    Oncogenic deubiquitination controls tyrosine kinase signaling and therapy response in acute lymphoblastic leukemia

    Full text link
    Dysregulation of kinase signaling pathways favors tumor cell survival and therapy resistance in cancer. Here, we reveal a posttranslational regulation of kinase signaling and nuclear receptor activity via deubiquitination in T cell acute lymphoblastic leukemia (T-ALL). We observed that the ubiquitin-specific protease 11 (USP11) is highly expressed and associates with poor prognosis in T-ALL. USP11 ablation inhibits leukemia progression in vivo, sparing normal hematopoiesis. USP11 forms a complex with USP7 to deubiquitinate the oncogenic lymphocyte cell-specific protein-tyrosine kinase (LCK) and enhance its activity. Impairment of LCK activity leads to increased glucocorticoid receptor (GR) expression and glucocorticoids sensitivity. Genetic knockout of USP7 improved the antileukemic efficacy of glucocorticoids in vivo. The transcriptional activation of GR target genes is orchestrated by the deubiquitinase activity and mediated via an increase in enhancer-promoter interaction intensity. Our data unveil how dysregulated deubiquitination controls leukemia survival and drug resistance, suggesting previously unidentified therapeutic combinations toward targeting leukemia

    Oncogenic deubiquitination controls tyrosine kinase signaling and therapy response in acute lymphoblastic leukemia

    Get PDF
    Dysregulation of kinase signaling pathways favors tumor cell survival and therapy resistance in cancer. Here, we reveal a posttranslational regulation of kinase signaling and nuclear receptor activity via deubiquitination in T cell acute lymphoblastic leukemia (T-ALL).We observed that the ubiquitin-specific protease 11 (USP11) is highly expressed and associates with poor prognosis in T-ALL. USP11 ablation inhibits leukemia progression in vivo, sparing normal hematopoiesis. USP11 forms a complex with USP7 to deubiquitinate the oncogenic lymphocyte cell-specific protein-tyrosine kinase (LCK) and enhance its activity. Impairment of LCK activity leads to increased glucocorticoid receptor (GR) expression and glucocorticoids sensitivity. Genetic knockout of USP7 improved the antileukemic efficacy of glucocorticoids in vivo. The transcriptional activation of GR target genes is orchestrated by the deubiquitinase activity and mediated via an increase in enhancer-promoter interaction intensity. Our data unveil how dysregulated deubiquitination controls leukemia survival and drug resistance, suggesting previously unidentified therapeutic combinations toward targeting leukemia

    Pharmacokinetics of dacarbazine (DTIC) in pregnancy.

    No full text
    PURPOSE: The purpose of this report is to describe, for the first time, the pharmacokinetics of dacarbazine (DTIC) and its metabolites [5-[3-methyl-triazen-1-yl]-imidazole-4-carboxamide (MTIC), 5-[3-hydroxymethyl-3-methyl-triazen-1-yl]-imidazole-4-carboxamide (HMMTIC) and 5-aminoimidazole-4-carboxamide (AIC)] during pregnancy (n = 2) and postpartum (n = 1). METHODS: Non-compartmental DTIC, MTIC, HMMTIC, and AIC pharmacokinetics (PK) were estimated in one case at 29 week gestation and 18 day postpartum and a second case at 32 week gestation, in women receiving DTIC in combination with doxorubicin, bleomycin, and vinblastine for treatment of Hodgkin\u27s lymphoma. Drug concentrations were measured by HPLC. RESULTS: In the subject who completed both pregnancy and postpartum study days, DTIC area under the concentration-time curve (AUC) was 27% higher and metabolite AUCs were lower by 27% for HMMTIC, 38% for MTIC, and 83% of AIC during pregnancy compared to postpartum. At 7 and 9 year follow-up, both subjects were in remission of their Hodgkin\u27s lymphoma. CONCLUSIONS: Based on these two case reports, pregnancy appears to decrease the metabolism of the pro-drug dacarbazine, likely through inhibition of CYP1A2 activity. Lower concentrations of active metabolites and decreased efficacy may result, although both these subjects experienced long-term remission of their Hodgkin\u27s lymphoma

    Gemcitabine and Irinotecan as First-Line Therapy for Carcinoma of Unknown Primary: Results of a Multicenter Phase II Trial

    Get PDF
    <div><p>Metastatic carcinoma of unknown primary (CUP) has a very poor prognosis, and no standard first-line therapy currently exists. Here, we report the results of a phase II study utilizing a combination of gemcitabine and irinotecan as first-line therapy. Treatment was with gemcitabine 1000 mg/m<sup>2</sup> and irinotecan 75 mg/m<sup>2</sup> weekly times four on a six week cycle (Cohort I). Due to excessive toxicity, the dose and schedule were modified as follows: gemcitabine 750 mg/m<sup>2</sup> and irinotecan 75 mg/m<sup>2</sup> given weekly times three on a four week cycle (Cohort II). The primary endpoint was the confirmed response rate (CR + PR). Secondary endpoints consisted of adverse events based upon the presence or absence of the UDP glucuronosyltransferase 1 family, polypeptide A1*28 (UGT1A1*28) polymorphism, time to progression, and overall survival. Thirty-one patients were enrolled with a median age of 63 (range: 38–94), and 26 patients were evaluable for efficacy. Significant toxicity was observed in Cohort 1, characterized by 50% (7/14) patients experiencing a grade 4+ adverse event, but not in cohort II. The confirmed response rate including patients from both cohorts was 12% (95% CI: 2–30%), which did not meet the criteria for continued enrollment. Overall median survival was 7.2 months (95% CI: 4.0 to 11.6) for the entire cohort but notably longer in cohort II than in cohort I (9.3 months (95% CI: 4.1 to 12.1) versus 4.0 months (95% CI: 2.2 to 15.6)). Gemcitabine and irinotecan is not an active combination when used as first line therapy in patients with metastatic carcinoma of unknown primary. Efforts into developing novel diagnostic and therapeutic approaches remain important for improving the outlook for this heterogeneous group of patients.</p> <h3>Trial Registration</h3><p>ClinicalTrials.gov <a href="http://clinicaltrials.gov/ct2/show/NCT00066781">NCT00066781</a></p> </div
    corecore