46 research outputs found

    Low density lipoprotein and liposome mediated uptake and cytotoxic effect of N4-octadecyl-1-β-D-arabinofuranosylcytosine in Daudi lymphoma cells

    Get PDF
    Low density lipoprotein (LDL) receptor-mediated uptake and cytotoxic effects of N4-octadecyl-1-beta-D-arabinofuranosylcytosine (NOAC) were studied in Daudi lymphoma cells. NOAC was either incorporated into LDL or liposomes to compare specific and unspecific uptake mechanisms. Binding of LDL to Daudi cells was not altered after NOAC incorporation (K(D) 60 nM). Binding of liposomal NOAC was not saturable with increasing concentrations. Specific binding of NOAC-LDL to Daudi cells was five times higher than to human lymphocytes. LDL receptor binding could be blocked and up- or down-regulated. Co-incubation with colchicine reduced NOAC-LDL uptake by 36%. These results suggested that NOAC-LDL is taken up via the LDL receptor pathway. In an in vitro cytotoxicity test, the IC50 of NOAC-LDL was about 160 microM, whereas with liposomal NOAC the IC50 was 40 microM. Blocking the LDL receptors with empty LDL protected 50% of the cells from NOAC cytotoxicity. The cellular distribution of NOAC-LDL or NOAC-liposomes differed only in the membrane and nuclei fraction with 13% and 6% respectively. Although it is more convenient to prepare NOAC-liposomes as compared to the loading of LDL particles with the drug, the receptor-mediated uptake of NOAC-LDL provides an interesting rationale for the specific delivery of the drug to tumours that express elevated numbers of LDL receptors

    The Dynamin Chemical Inhibitor Dynasore Impairs Cholesterol Trafficking and Sterol-Sensitive Genes Transcription in Human HeLa Cells and Macrophages

    Get PDF
    Intracellular transport of cholesterol contributes to the regulation of cellular cholesterol homeostasis by mechanisms that are yet poorly defined. In this study, we characterized the impact of dynasore, a recently described drug that specifically inhibits the enzymatic activity of dynamin, a GTPase regulating receptor endocytosis and cholesterol trafficking. Dynasore strongly inhibited the uptake of low-density lipoprotein (LDL) in HeLa cells, and to a lower extent in human macrophages. In both cell types, dynasore treatment led to the abnormal accumulation of LDL and free cholesterol (FC) within the endolysosomal network. The measure of cholesterol esters (CE) further showed that the delivery of regulatory cholesterol to the endoplasmic reticulum (ER) was deficient. This resulted in the inhibition of the transcriptional control of the three major sterol-sensitive genes, sterol-regulatory element binding protein 2 (SREBP-2), 3-hydroxy-3-methyl-coenzymeA reductase (HMGCoAR), and low-density lipoprotein receptor (LDLR). The sequestration of cholesterol in the endolysosomal compartment impaired both the active and passive cholesterol efflux in HMDM. Our data further illustrate the importance of membrane trafficking in cholesterol homeostasis and validate dynasore as a new pharmacological tool to study the intracellular transport of cholesterol

    Functional Analysis and Molecular Dynamics Simulation of LOX-1 K167N Polymorphism Reveal Alteration of Receptor Activity

    Get PDF
    The human lectin-like oxidized low density lipoprotein receptor 1 LOX-1, encoded by the ORL1 gene, is the major scavenger receptor for oxidized low density lipoprotein in endothelial cells. Here we report on the functional effects of a coding SNP, c.501G>C, which produces a single amino acid change (K>N at codon 167). Our study was aimed at elucidating whether the c.501G>C polymorphism changes the binding affinity of LOX-1 receptor altering its function. The presence of p.K167N mutation reduces ox-LDL binding and uptake. Ox-LDL activated extracellular signal-regulated kinases 1 and 2 (ERK 1/2) is inhibited. Furthermore, ox-LDL induced biosynthesis of LOX-1 receptors is dependent on the p.K167N variation. In human macrophages, derived from c.501G>C heterozygous individuals, the ox-LDL induced LOX-1 46 kDa band is markedly lower than in induced macrophages derived from c.501G>C controls. Investigation of p.K167N mutation through molecular dynamics simulation and electrostatic analysis suggests that the ox-LDL binding may be attributed to the coupling between the electrostatic potential distribution and the asymmetric flexibility of the basic spine residues. The N/N-LOX-1 mutant has either interrupted electrostatic potential and asymmetric fluctuations of the basic spine arginines

    Cholesterol Homeostasis in Two Commonly Used Human Prostate Cancer Cell-Lines, LNCaP and PC-3

    Get PDF
    BACKGROUND:Recently, there has been renewed interest in the link between cholesterol and prostate cancer. It has been previously reported that in vitro, prostate cancer cells lack sterol-mediated feedback regulation of the major transcription factor in cholesterol homeostasis, sterol-regulatory element binding protein 2 (SREBP-2). This could explain the accumulation of cholesterol observed in clinical prostate cancers. Consequently, perturbed feedback regulation to increased sterol levels has become a pervasive concept in the prostate cancer setting. Here, we aimed to explore this in greater depth. METHODOLOGY/PRINCIPAL FINDINGS:After altering the cellular cholesterol status in LNCaP and PC-3 prostate cancer cells, we examined SREBP-2 processing, downstream effects on promoter activity and expression of SREBP-2 target genes, and functional activity (low-density lipoprotein uptake, cholesterol synthesis). In doing so, we observed that LNCaP and PC-3 cells were sensitive to increased sterol levels. In contrast, lowering cholesterol levels via statin treatment generated a greater response in LNCaP cells than PC-3 cells. This highlighted an important difference between these cell-lines: basal SREBP-2 activity appeared to be higher in PC-3 cells, reducing sensitivity to decreased cholesterol levels. CONCLUSION/SIGNIFICANCE:Thus, prostate cancer cells are sensitive to changing sterol levels in vitro, but the extent of this regulation differs between prostate cancer cell-lines. These results shed new light on the regulation of cholesterol metabolism in two commonly used prostate cancer cell-lines, and emphasize the importance of establishing whether or not cholesterol homeostasis is perturbed in prostate cancer in vivo

    Cholesterol-Dependent Anaplasma phagocytophilum Exploits the Low-Density Lipoprotein Uptake Pathway

    Get PDF
    In eukaryotes, intracellular cholesterol homeostasis and trafficking are tightly regulated. Certain bacteria, such as Anaplasma phagocytophilum, also require cholesterol; it is unknown, however, how this cholesterol-dependent obligatory intracellular bacterium of granulocytes interacts with the host cell cholesterol regulatory pathway to acquire cholesterol. Here, we report that total host cell cholesterol increased >2-fold during A. phagocytophilum infection in a human promyelocytic leukemia cell line. Cellular free cholesterol was enriched in A. phagocytophilum inclusions as detected by filipin staining. We determined that A. phagocytophilum requires cholesterol derived from low-density lipoprotein (LDL), because its replication was significantly inhibited by depleting the growth medium of cholesterol-containing lipoproteins, by blocking LDL uptake with a monoclonal antibody against LDL receptor (LDLR), or by treating the host cells with inhibitors that block LDL-derived cholesterol egress from late endosomes or lysosomes. However, de novo cholesterol biosynthesis is not required, since inhibition of the biosynthesis pathway did not inhibit A. phagocytophilum infection. The uptake of fluorescence-labeled LDL was enhanced in infected cells, and LDLR expression was up-regulated at both the mRNA and protein levels. A. phagocytophilum infection stabilized LDLR mRNA through the 3′ UTR region, but not through activation of the sterol regulatory element binding proteins. Extracellular signal–regulated kinase (ERK) was up-regulated by A. phagocytophilum infection, and inhibition of its upstream kinase, MEK, by a specific inhibitor or siRNA knockdown, reduced A. phagocytophilum infection. Up-regulation of LDLR mRNA by A. phagocytophilum was also inhibited by the MEK inhibitor; however, it was unclear whether ERK activation is required for LDLR mRNA up-regulation by A. phagocytophilum. These data reveal that A. phagocytophilum exploits the host LDL uptake pathway and LDLR mRNA regulatory system to accumulate cholesterol in inclusions to facilitate its replication

    Dynamic Effective Connectivity of Inter-Areal Brain Circuits

    Get PDF
    Anatomic connections between brain areas affect information flow between neuronal circuits and the synchronization of neuronal activity. However, such structural connectivity does not coincide with effective connectivity (or, more precisely, causal connectivity), related to the elusive question “Which areas cause the present activity of which others?”. Effective connectivity is directed and depends flexibly on contexts and tasks. Here we show that dynamic effective connectivity can emerge from transitions in the collective organization of coherent neural activity. Integrating simulation and semi-analytic approaches, we study mesoscale network motifs of interacting cortical areas, modeled as large random networks of spiking neurons or as simple rate units. Through a causal analysis of time-series of model neural activity, we show that different dynamical states generated by a same structural connectivity motif correspond to distinct effective connectivity motifs. Such effective motifs can display a dominant directionality, due to spontaneous symmetry breaking and effective entrainment between local brain rhythms, although all connections in the considered structural motifs are reciprocal. We show then that transitions between effective connectivity configurations (like, for instance, reversal in the direction of inter-areal interactions) can be triggered reliably by brief perturbation inputs, properly timed with respect to an ongoing local oscillation, without the need for plastic synaptic changes. Finally, we analyze how the information encoded in spiking patterns of a local neuronal population is propagated across a fixed structural connectivity motif, demonstrating that changes in the active effective connectivity regulate both the efficiency and the directionality of information transfer. Previous studies stressed the role played by coherent oscillations in establishing efficient communication between distant areas. Going beyond these early proposals, we advance here that dynamic interactions between brain rhythms provide as well the basis for the self-organized control of this “communication-through-coherence”, making thus possible a fast “on-demand” reconfiguration of global information routing modalities

    Transition metal-like carbocatalyst

    Get PDF
    Catalytic cleavage of strong bonds including hydrogen-hydrogen, carbon-oxygen, and carbon-hydrogen bonds is a highly desired yet challenging fundamental transformation for the production of chemicals and fuels. Transition metal-containing catalysts are employed, although accompanied with poor selectivity in hydrotreatment. Here we report metal-free nitrogen-assembly carbons (NACs) with closely-placed graphitic nitrogen as active sites, achieving dihydrogen dissociation and subsequent transformation of oxygenates. NACs exhibit high selectivity towards alkylarenes for hydrogenolysis of aryl ethers as model bio-oxygenates without over-hydrogeneration of arenes. Activities originate from cooperating graphitic nitrogen dopants induced by the diamine precursors, as demonstrated in mechanistic and computational studies. We further show that the NAC catalyst is versatile for dehydrogenation of ethylbenzene and tetrahydroquinoline as well as for hydrogenation of common unsaturated functionalities, including ketone, alkene, alkyne, and nitro groups. The discovery of nitrogen assembly as active sites can open up broad opportunities for rational design of new metal-free catalysts for challenging chemical reactions.The Ames Laboratory is operated for the U.S. DOE by Iowa State University under Contract No. DE‐AC02‐07CH11358. The computational simulations were performed at the OU Supercomputing Center for Education and Research and the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility, and were supported by the U.S. Department of Energy, Basic Energy Sciences (Grant DE-SC0020300). Open Access fees paid for in whole or in part by the University of Oklahoma Libraries.Ye
    corecore