717 research outputs found

    Role of gap junctions in the propagation of the cardiac action potential

    Get PDF
    Gap junctions play a pivotal role for the velocity and the safety of impulse propagation in cardiac tissue. Under physiologic conditions, the specific subcellular distribution of gap junctions together with the tight packaging of the rod-shaped cardiomyocytes underlies anisotropic conduction, which is continuous at the macroscopic scale. However, when breaking down the three-dimensional network of cells into linear single cell chains, gap junctions can be shown to limit axial current flow and to induce ‘saltatory' conduction at unchanged overall conduction velocities. In two- and three-dimensional tissue, these discontinuities disappear due to lateral averaging of depolarizing current flow at the activation wavefront. During gap junctional uncoupling, discontinuities reappear and are accompanied by slowed and meandering conduction. Critical gap junctional uncoupling reduces conduction velocities to a much larger extent than does a reduction of excitability, which suggests that the safety for conduction is higher at any given conduction velocity for gap junctional uncoupling. In uniformly structured tissue, gap junctional uncoupling is accompanied by a parallel decrease in conduction velocity. However, this is not necessarily the case for non-uniform structures like tissue expansion where partial uncoupling paradoxically increases conduction velocity and has the capacity to remove unidirectional conduction blocks. Whereas the impact of gap junctions on impulse conduction is generally assessed from the point of view of cell coupling among cardiomyocytes, it is possible that other cell types within the myocardium might be coupled to cardiomyocytes as well. In this context, it has been shown that fibroblasts establish successful conduction between sheets of cardiomyocytes over distances as long as 300 μm. This might not only explain electrical synchronization of heart transplants but might be of importance for cardiac diseases involving fibrosis. Finally, the intriguing fact that sodium channels are clustered at the intercalated disc recently rekindled the provocative question of whether gap junctions alone are responsible for impulse propagation or whether electric field mechanisms might account for conduction as well. Whereas computer simulations show the feasibility of conduction in the absence of gap junctional coupling, a definite answer to this question must await further investigations into the biophysical properties of the intercalated dis

    Resveratrol reduces myofibroblast arrhythmogenicity

    Get PDF
    Background: Among grape skin polyphenols, trans-resveratrol (RES) has been reported to slow the development of cardiac fibrosis and to affect myofibroblast (MFB) differentiation. Because MFBs induce slow conduction and ectopic activity following heterocellular gap junctional coupling to cardiomyocytes, we investigated whether RES and its main metabolites affect arrhythmogenic cardiomyocyte-MFB interactions. Methods: Experiments were performed with patterned growth strands of neonatal rat ventricular cardiomyocytes coated with cardiac MFBs. Impulse propagation characteristics were measured optically using voltage-sensitive dyes. Long-term video recordings served to characterize drug-related effects on ectopic activity. Data are given as means ± S.D. (n = 4–20). Results: Exposure of pure cardiomyocyte strands to RES at concentrations up to 10 µmol/L had no significant effects on impulse conduction velocity (θ) and maximal action potential upstroke velocities (dV/dtmax). By contrast, in MFB-coated strands exhibiting slow conduction, RES enhanced θ with an EC50 of ~10 nmol/L from 226 ± 38 to 344 ± 24 mm/s and dV/dtmax from 48 ± 7 to 69 ± 2%APA/ms, i.e., to values of pure cardiomyocyte strands (347 ± 33 mm/s; 75 ± 4%APA/ms). Moreover, RES led to a reduction of ectopic activity over the course of several hours in heterocellular preparations. RES is metabolized quickly in the body; therefore, we tested the main known metabolites for functional effects and found them similarly effective in normalizing conduction with EC50s of ~10 nmol/L (3-OH-RES), ~20 nmol/L (RES-3-O-β-glucuronide) and ~10 nmol/L (RES-sulfate), respectively. At these concentrations, neither RES nor its metabolites had any effects on MFB morphology and α-smooth muscle actin expression. This suggests that the antiarrhythmic effects observed were based on mechanisms different from a change in MFB phenotype. Conclusions: The results demonstrate that RES counteracts MFB-dependent arrhythmogenic slow conduction and ectopic activity at physiologically relevant concentrations. Because RES is rapidly metabolized following intestinal absorption, the finding of equal antiarrhythmic effectiveness of the main RES metabolites warrants their inclusion in future studies of potentially beneficial effects of these substances on the heart

    Modification of actin fibers changes the electrical phenotype of cardiac myofibroblasts

    Get PDF
    Background: Slow conduction and ectopic activity are major determinants of cardiac arrhythmogenesis. Both of these conditions can be elicited by myofibroblasts (MFBs) following establishment of heterocellular gap junctional coupling with cardiomyocytes. MFBs appear during structural remodeling of the heart and are characterized by the expression of α-smooth muscle actin (α-SMA) containing stress fibers. In this study, we investigated whether pharmacological interference with the actin cytoskeleton affects myofibroblast arrhythmogeneicity. Methods: Experiments were performed with patterned growth strands of neonatal rat ventricular cardiomyocytes coated with cardiac MFBs. Impulse conduction velocity (θ) and maximal upstroke velocities of propagated action potentials (dV/dtmax), expressed as % action potential amplitude change (%APA) per ms, were measured optically using voltage sensitive dyes. Actin was destabilized by latrunculin B (LtB) and cytochalasin D and stabilized with jasplakinolide. Data are given as mean ± S.D. (n = 5-22). Single cell electrophysiology was assessed using standard patch-clamp techniques. Results: As revealed by immunocytochemistry, exposure of MFBs to LtB (0.01-10 μmol/L) profoundly disrupted stress fibers which led to drastic changes in cell morphology with MFBs assuming an astrocyte-like shape. In control cardiomyocyte strands (no MFB coat), LtB had negligible effects on θ and dV/dtmax. In contrast, LtB applied to MFB-coated strands increased θ dose-dependently from 197 ± 35 mm/s to 344 ± 26 mm/s and dV/dtmax from 38 ± 5 to 78 ± 3% APA/ms, i.e., to values virtually identical to those of cardiomyocyte control strands (339 ± 24 mm/s; 77 ± 3% APA/ms). Highly similar results were obtained when exposing the preparations to cytochalasin D. In contrast, stabilization of actin with increasing concentrations of jasplakinolide exerted no significant effects on impulse conduction characteristics in MFB-coated strands. Whole-cell patch-clamp experiments showed that LtB hyperpolarized MFBs from -25 mV to -50 mV, thus limiting their depolarizing effect on cardiomyocytes which was shown before to cause arrhythmogenic slow conduction and ectopic activity. Conclusion: Pharmacological interference with the actin cytoskeleton of cardiac MFBs affects their electrophysiological phenotype to such an extent that they loose their detrimental effects on cardiomyocyte electrophysiology. This result might form a basis for the development of therapeutic strategies aimed at limiting the arrhythmogenic potential of MFBs

    Aggravation of cardiac myofibroblast arrhythmogeneicity by mechanical stress

    Get PDF
    Aims Myofibroblasts (MFBs) as appearing in the myocardium during fibrotic remodelling induce slow conduction following heterocellular gap junctional coupling with cardiomyocytes (CMCs) in bioengineered tissue preparations kept under isometric conditions. In this study, we investigated the hypothesis that strain as developed during diastolic filling of the heart chambers may modulate MFB-dependent slow conduction. Methods and results Effects of defined levels of strain on single-cell electrophysiology (patch clamp) and impulse conduction in patterned growth cell strands (optical mapping) were investigated in neonatal rat ventricular cell cultures (Wistar) grown on flexible substrates. While 10.5% strain only minimally affected conduction times in control CMC strands (+3.2%, n.s.), it caused a significant slowing of conduction in the fibrosis model consisting of CMC strands coated with MFBs (conduction times +26.3%). Increased sensitivity to strain of the fibrosis model was due to activation of mechanosensitive channels (MSCs) in both CMCs and MFBs that aggravated the MFB-dependent baseline depolarization of CMCs. As found in non-strained preparations, baseline depolarization of CMCs was partly due to the presence of constitutively active MSCs in coupled MFBs. Constitutive activity of MSCs was not dependent on the contractile state of MFBs, because neither stimulation (thrombin) nor suppression (blebbistatin) thereof significantly affected conduction velocities in the non-strained fibrosis model. Conclusions The findings demonstrate that both constitutive and strain-induced activity of MSCs in MFBs significantly enhance their depolarizing effect on electrotonically coupled CMCs. Ensuing aggravation of slow conduction may contribute to the precipitation of strain-related arrhythmias in fibrotically remodelled heart

    Tribological and Corrosion Behavior of Vacuum Plasma Sprayed Ti-Zr-Ni Quasicrystalline Coatings

    Get PDF
    This investigation deals with a study of the friction, wear, and corrosion behavior of vacuum plasma sprayed quasicrystalline (QC) Ti41.5Zr41.5Ni17 coatings. During pin on disc experiments, a change in the mode of wear has been found to occur with corresponding changes in normal load and sliding velocity. The low thermal conductivity of quasicrystals and its brittleness play a vital role in determining the friction and wear behavior of such materials. When these coatings are subjected to rubbing for a longer period of time, wear occurs by subsurface crack propagation, and subsequent delamination within the coated layer. By comparing the QC to its polycrystalline counterpart during potentiodynamic measurements according to ASTM G 31, higher currents were found over the whole range of potentials for QC when immersed in 1M HCl solutio

    Enabling comprehensive optogenetic studies of mouse hearts by simultaneous opto-electrical panoramic mapping and stimulation

    Get PDF
    During the last decade, cardiac optogenetics has turned into an essential tool for investigating cardiac function in general and for assessing functional interactions between different myocardial cell types in particular. To advance exploitation of the unique research opportunities offered by this method, we develop a panoramic opto-electrical measurement and stimulation (POEMS) system for mouse hearts. The core of the experimental platform is composed of 294 optical fibers and 64 electrodes that form a cup which embraces the entire ventricular surface of mouse hearts and enables straightforward 'drop&go' experimentation. The flexible assignment of fibers and electrodes to recording or stimulation tasks permits a precise tailoring of experiments to the specific requirements of individual optogenetic constructs thereby avoiding spectral congestion. Validation experiments with hearts from transgenic animals expressing the optogenetic voltage reporters ASAP1 and ArcLight-Q239 demonstrate concordance of simultaneously recorded panoramic optical and electrical activation maps. The feasibility of single fiber optical stimulation is proven with hearts expressing the optogenetic voltage actuator ReaChR. Adaptation of the POEMS system to larger hearts and incorporation of additional sensors can be achieved by redesigning the system-core accordingly

    The natural cardioprotective particle HDL modulates connexin43 gap junction channels

    Get PDF
    Aims High-density lipoprotein (HDL) is known for its cardioprotective properties independent from its cholesterol transport activity. These properties are mediated by activation of kinases such as protein kinase C (PKC). Connexin43 (Cx43) is a gap junction protein present in ventricular cardiomyocytes. PKC-dependent phosphorylation modifies Cx43 gap junction channel properties and is involved in cardioprotection. We hypothesized that cardioprotective properties of HDL may be mediated in part by affecting Cx43 gap junction channels. Methods and results Neonatal rat cardiomyocytes were treated with HDL and Cx43 phosphorylation was evaluated by western blotting and immunofluorescence. We found that HDL promoted phosphorylation of Cx43 with a maximal induction at 5 min, which was inhibited by pre-treatment with various PKC inhibitors. Sphingosine-1-phosphate (S1P), a component of HDL, induced effects that were similar to those of HDL. These compounds significantly reduced diffusion of fluorescent dye among cardiomyocytes (∼50%) which could be prevented by PKC inhibition. As observed during optical recordings of transmembrane voltage, HDL and S1P depressed impulse conduction only minimally (<5%). Moreover, 5 min of HDL and S1P treatment at the onset of reperfusion significantly reduced infarct size (∼50%) in response to 30 min ischaemia in ex vivo experiments. Conclusion Short-term treatment with HDL or S1P induces phosphorylation of Cx43 by a PKC-dependent pathway. HDL-induced phosphorylation of Cx43 reduced the diffusion of large tracer molecules between cells, whereas impulse conduction was maintained. Moreover, 5 min treatment with HDL confers cardioprotection against ischaemia/reperfusion injury. These results link Cx43 for the first time to the short-term cardioprotective effects of HD

    Myofibroblasts Electrotonically Coupled to Cardiomyocytes Alter Conduction: Insights at the Cellular Level from a Detailed In silico Tissue Structure Model

    Get PDF
    Fibrotic myocardial remodeling is typically accompanied by the appearance of myofibroblasts (MFBs). In vitro, MFBs were shown to slow conduction and precipitate ectopic activity following gap junctional coupling to cardiomyocytes (CMCs). To gain further mechanistic insights into this arrhythmogenic MFB-CMC crosstalk, we performed numerical simulations in cell-based high-resolution two-dimensional tissue models that replicated experimental conditions. Cell dimensions were determined using confocal microscopy of single and co-cultured neonatal rat ventricular CMCs and MFBs. Conduction was investigated as a function of MFB density in three distinct cellular tissue architectures: CMC strands with endogenous MFBs, CMC strands with coating MFBs of two different sizes, and CMC strands with MFB inserts. Simulations were performed to identify individual contributions of heterocellular gap junctional coupling and of the specific electrical phenotype of MFBs. With increasing MFB density, both endogenous and coating MFBs slowed conduction. At MFB densities of 5-30%, conduction slowing was most pronounced in strands with endogenous MFBs due to the MFB-dependent increase in axial resistance. At MFB densities >40%, very slow conduction and spontaneous activity was primarily due to MFB-induced CMC depolarization. Coating MFBs caused non-uniformities of resting membrane potential, which were more prominent with large than with small MFBs. In simulations of MFB inserts connecting two CMC strands conduction delays increased with increasing insert lengths and block appeared for inserts >1.2 mm. Thus, electrophysiological properties of engineered CMC-MFB co-cultures depend on MFB density, MFB size and their specific positioning in respect to CMCs. These factors may influence conduction characteristics in the heterocellular myocardium

    The European Network for Translational Research in Atrial Fibrillation (EUTRAF): objectives and initial results

    Get PDF
    Atrial fibrillation (AF) is the most common sustained arrhythmia in the general population. As an age-related arrhythmia AF is becoming a huge socio-economic burden for European healthcare systems. Despite significant progress in our understanding of the pathophysiology of AF, therapeutic strategies for AF have not changed substantially and the major challenges in the management of AF are still unmet. This lack of progress may be related to the multifactorial pathogenesis of atrial remodelling and AF that hampers the identification of causative pathophysiological alterations in individual patients. Also, again new mechanisms have been identified and the relative contribution of these mechanisms still has to be established. In November 2010, the European Union launched the large collaborative project EUTRAF (European Network of Translational Research in Atrial Fibrillation) to address these challenges. The main aims of EUTRAF are to study the main mechanisms of initiation and perpetuation of AF, to identify the molecular alterations underlying atrial remodelling, to develop markers allowing to monitor this processes, and suggest strategies to treat AF based on insights in newly defined disease mechanisms. This article reports on the objectives, the structure, and initial results of this networ
    corecore