10 research outputs found
GDF5 Is a Second Locus for Multiple-Synostosis Syndrome
Multiple-synostosis syndrome is an autosomal dominant disorder characterized by progressive symphalangism, carpal/tarsal fusions, deafness, and mild facial dysmorphism. Heterozygosity for functional null mutations in the NOGGIN gene has been shown to be responsible for the disorder. However, in a cohort of six probands with multiple-synostosis syndrome, only one was found to be heterozygous for a NOGGIN mutation (W205X). Linkage studies involving the four-generation family of one of the mutation-negative patients excluded the NOGGIN locus, providing genetic evidence of locus heterogeneity. In this family, polymorphic markers flanking the GDF5 locus were found to cosegregate with the disease, and sequence analysis demonstrated that affected individuals in the family were heterozygous for a novel missense mutation that predicts an R438L substitution in the GDF5 protein. Unlike mutations that lead to haploinsufficiency for GDF5 and produce brachydactyly C, the protein encoded by the multiple-synostosis–syndrome allele was secreted as a mature GDF5 dimer. These data establish locus heterogeneity in multiple-synostosis syndrome and demonstrate that the disorder can result from mutations in either the NOGGIN or the GDF5 gene
An inversion involving the mouse Shh locus results in brachydactyly through dysregulation of Shh expression
Short digits (Dsh) is a radiation-induced mouse mutant. Homozygous mice are characterized by multiple defects strongly resembling those resulting from Sonic hedgehog (Shh) inactivation. Heterozygous mice show a limb reduction phenotype with fusion and shortening of the proximal and middle phalanges in all digits, similar to human brachydactyly type A1, a condition caused by mutations in Indian hedgehog (IHH). We mapped Dsh to chromosome 5 in a region containing Shh and were able to demonstrate an inversion comprising 11.7 Mb. The distal breakpoint is 13.298 kb upstream of Shh, separating the coding sequence from several putative regulatory elements identified by interspecies comparison. The inversion results in almost complete downregulation of Shh expression during E9.5–E12.5, explaining the homozygous phenotype. At E13.5 and E14.5, however, Shh is upregulated in the phalangeal anlagen of Dsh/+ mice, at a time point and in a region where WT Shh is never expressed. The dysregulation of Shh expression causes the local upregulation of hedgehog target genes such as Gli1-3, patched, and Pthlh, as well as the downregulation of Ihh and Gdf5. This results in shortening of the digits through an arrest of chondrocyte differentiation and the disruption of joint development
Kernaussagen und Handlungsempfehlungen zu Organoiden
Das Kapitel fasst zunächst den aktuellen Sachstand zusammen und bietet einen Ausblick auf die zukünftige Bedeutung von Organoiden für Forschung und Gesundheitsversorgung, wobei auch die Rechtslage und ethische Diskussionen berücksichtigt werden. Daran anschließend werden Handlungsempfehlungen für die Politik abgeleitet
Dual guidance structure for evaluation of patients with unclear diagnosis in centers for rare diseases (ZSE-DUO): study protocol for a controlled multi-center cohort study
Background
In individuals suffering from a rare disease the diagnostic process and the confirmation of a final diagnosis often extends over many years. Factors contributing to delayed diagnosis include health care professionals' limited knowledge of rare diseases and frequent (co-)occurrence of mental disorders that may complicate and delay the diagnostic process. The ZSE-DUO study aims to assess the benefits of a combination of a physician focusing on somatic aspects with a mental health expert working side by side as a tandem in the diagnostic process.
Study design
This multi-center, prospective controlled study has a two-phase cohort design.
Methods
Two cohorts of 682 patients each are sequentially recruited from 11 university-based German Centers for Rare Diseases (CRD): the standard care cohort (control, somatic expertise only) and the innovative care cohort (experimental, combined somatic and mental health expertise). Individuals aged 12 years and older presenting with symptoms and signs which are not explained by current diagnoses will be included. Data will be collected prior to the first visit to the CRD’s outpatient clinic (T0), at the first visit (T1) and 12 months thereafter (T2).
Outcomes
Primary outcome is the percentage of patients with one or more confirmed diagnoses covering the symptomatic spectrum presented. Sample size is calculated to detect a 10 percent increase from 30% in standard care to 40% in the innovative dual expert cohort. Secondary outcomes are (a) time to diagnosis/diagnoses explaining the symptomatology; (b) proportion of patients successfully referred from CRD to standard care; (c) costs of diagnosis including incremental cost effectiveness ratios; (d) predictive value of screening instruments administered at T0 to identify patients with mental disorders; (e) patients’ quality of life and evaluation of care; and f) physicians’ satisfaction with the innovative care approach.
Conclusions
This is the first multi-center study to investigate the effects of a mental health specialist working in tandem with a somatic expert physician in CRDs. If this innovative approach proves successful, it will be made available on a larger scale nationally and promoted internationally. In the best case, ZSE-DUO can significantly shorten the time to diagnosis for a suspected rare disease
TAD boundary deletion causes PITX2-related cardiac electrical and structural defects.
International audienceWhile 3D chromatin organization in topologically associating domains (TADs) and loops mediating regulatory element-promoter interactions is crucial for tissue-specific gene regulation, the extent of their involvement in human Mendelian disease is largely unknown. Here, we identify 7 families presenting a new cardiac entity associated with a heterozygous deletion of 2 CTCF binding sites on 4q25, inducing TAD fusion and chromatin conformation remodeling. The CTCF binding sites are located in a gene desert at 1 Mb from the Paired-like homeodomain transcription factor 2 gene (PITX2). By introducing the ortholog of the human deletion in the mouse genome, we recapitulate the patient phenotype and characterize an opposite dysregulation of PITX2 expression in the sinoatrial node (ectopic activation) and ventricle (reduction), respectively. Chromatin conformation assay performed in human induced pluripotent stem cell-derived cardiomyocytes harboring the minimal deletion identified in family#1 reveals a conformation remodeling and fusion of TADs. We conclude that TAD remodeling mediated by deletion of CTCF binding sites causes a new autosomal dominant Mendelian cardiac disorder
Dual guidance structure for evaluation of patients with unclear diagnosis in centers for rare diseases (ZSE-DUO): study protocol for a controlled multi-center cohort study
Background: In individuals suffering from a rare disease the diagnostic process and the confirmation of a final diagnosis often extends over many years. Factors contributing to delayed diagnosis include health care professionals' limited knowledge of rare diseases and frequent (co-)occurrence of mental disorders that may complicate and delay the diagnostic process. The ZSE-DUO study aims to assess the benefits of a combination of a physician focusing on somatic aspects with a mental health expert working side by side as a tandem in the diagnostic process. Study design: This multi-center, prospective controlled study has a two-phase cohort design. Methods: Two cohorts of 682 patients each are sequentially recruited from 11 university-based German Centers for Rare Diseases (CRD): the standard care cohort (control, somatic expertise only) and the innovative care cohort (experimental, combined somatic and mental health expertise). Individuals aged 12 years and older presenting with symptoms and signs which are not explained by current diagnoses will be included. Data will be collected prior to the first visit to the CRD's outpatient clinic (T0), at the first visit (T1) and 12 months thereafter (T2). Outcomes: Primary outcome is the percentage of patients with one or more confirmed diagnoses covering the symptomatic spectrum presented. Sample size is calculated to detect a 10 percent increase from 30% in standard care to 40% in the innovative dual expert cohort. Secondary outcomes are (a) time to diagnosis/diagnoses explaining the symptomatology; (b) proportion of patients successfully referred from CRD to standard care; (c) costs of diagnosis including incremental cost effectiveness ratios; (d) predictive value of screening instruments administered at T0 to identify patients with mental disorders; (e) patients' quality of life and evaluation of care; and f) physicians' satisfaction with the innovative care approach. Conclusions: This is the first multi-center study to investigate the effects of a mental health specialist working in tandem with a somatic expert physician in CRDs. If this innovative approach proves successful, it will be made available on a larger scale nationally and promoted internationally. In the best case, ZSE-DUO can significantly shorten the time to diagnosis for a suspected rare disease