10 research outputs found

    Wirkung von Celecoxib und Cetuximab auf die Strahlensensibilität der Tumorzelllinien A549 und FaDu in vitro

    Get PDF
    Die Effekte der Wirkstoffe Celecoxib und Cetuximab auf die Tumorzelllinien A549 und FaDu wurden mit Wachstumsexperimenten, Koloniebildungstests, DNA-Reparatur-Experimenten und Zellzyklusanalysen in vitro untersucht. Celecoxib hemmte das Wachstum dosisabhängig. Die kombinierte Applikation der Wirkstoffe führte zu einer Strahlensensibilisierung der A549-Zellen, nicht jedoch der FaDu-Zellen. Die DNA-Reparatur erfolgte in den Zelllinien mit unterschiedlicher zeitlicher Dynamik, jedoch ohne Einfluss der Wirkstoffe. Die Zellzyklusverteilung wurde durch die Wirkstoffe in additiver Weise beeinflusst

    The solvent and treatment regimen of sodium selenite cause its effects to vary on the radiation response of human bronchial cells from tumour and normal tissues

    No full text
    Sodium selenite is often given to moderate the side effects of cancer therapy to enhance the cellular defence of non-cancerous cells. To determine whether sodium selenite during radiotherapy protects not only normal cells but also cancer cells, which would imply a reduction of the desired effect of irradiation on tumour during radiotherapy, the effect of the combined treatment of irradiation and sodium selenite was investigated. Human bronchial cells from carcinoma (A549) and normal tissue (BEAS-2B) were treated with sodium selenite and effects on growth and in combination with radiation on metabolic activity and cell cycle distribution were studied. The influence on radiosensitivity was determined via colony forming assays using different solvents of sodium selenite and treatment schedules. It was shown that sodium selenite inhibits growth and influences cell cycle distribution of both normal and tumour cells. Metabolic activity of normal cells decreased more rapidly compared to that of cancer cells. The influence of sodium selenite on radiation response depended on the different treatment schedules and was strongly affected by the solvent of the agent. It could be shown that the effect of sodium selenite on radiation response is strongly dependent on the respective experimental in vitro conditions and ranges from lead to an initially suspected but ultimately no real radioprotection to radiosensitizing up to no effect in one and the same cell line. This might be a reason for controversially described cell responses to radiation under the influence of sodium selenite in studies so far

    First Insights into the Effect of Low-Dose X-Ray Irradiation in Adipose-Derived Stem Cells

    No full text
    (1) Background: Emerging interest of physicians to use adipose-derived stem cells (ADSCs) for regenerative therapies and the fact that low-dose irradiation (LD-IR ≤ 0.1 Gy) has been reported to enhance the proliferation of several human normal and bone-marrow stem cells, but not that of tumor cells, lead to the idea of improving stem cell therapies via low-dose radiation. Therefore, the aim of this study was to investigate unwanted side effects, as well as proliferation-stimulating mechanisms of LD-IR on ADSCs. (2) Methods: To avoid donor specific effects, ADSCs isolated from mamma reductions of 10 donors were pooled and used for the radiobiological analysis. The clonogenic survival assay was used to classify the long-term effects of low-dose radiation in ADSCs. Afterwards, cytotoxicity and genotoxicity, as well as the effect of irradiation on proliferation of ADSCs were investigated. (3) Results: LD (≤ 0.1 Gy) of ionizing radiation promoted the proliferation and survival of ADSCs. Within this dose range neither geno- nor cytotoxic effects were detectable. In contrast, greater doses within the dose range of >0.1–2.0 Gy induced residual double-strand breaks and reduced the long-term survival, as well as the proliferation rate of ADSCs. (4) Conclusions: Our data suggest that ADSCs are resistant to LD-IR. Furthermore, LD-IR could be a possible mediator to improve approaches of stem cells in the field of regenerative medicine

    Radiosensitizing Effects of Irinotecan versus Oxaliplatin Alone and in Combination with 5-Fluorouracil on Human Colorectal Cancer Cells

    No full text
    To date, oxaliplatin and irinotecan are used in combination with 5-flourouracil (5-FU) for metastatic colorectal cancer. In this study it was tested whether oxaliplatin and irinotecan and their combinations with 5-FU have an enhanced effect when treated simultaneously with ionizing radiation. In addition, it should be compared whether one combination therapy is more effective than the other. Colorectal cancer cells (HT-29) were treated with irinotecan or oxaliplatin, both alone and in combination with 5-FU, and subsequently irradiated. The cell growth, metabolic activity and proliferation of cells were investigated, and the clonogenic survival was determined. Furthermore, the assessment of radiation-induced DNA damage and the influence of the drugs and their combinations on DNA damage repair was investigated. Treatment with irinotecan or oxaliplatin in combination with 5-FU inhibited proliferation and metabolic activity as well as clonogenic survival and the DNA damage repair capacity of the tumor cells. The comparison of oxaliplatin and irinotecan with simultaneous irradiation showed the same effect of both drugs. When oxaliplatin or irinotecan was combined with 5-FU, tumor cell survival was significantly lower than with monotherapy; however, there was no superiority of either combination regimen. Our results have shown that the combination of 5-FU and irinotecan is as effective as the combination of 5-FU with oxaliplatin. Therefore, our data support the use of FOLFIRI as a radiosensitizer

    Comparative study of the effects of different radiation qualities on normal human breast cells

    Get PDF
    BACKGROUND: As there is a growing number of long-term cancer survivors, the incidence of carcinogenesis as a late effect of radiotherapy is getting more and more into the focus. The risk for the development of secondary malignant neoplasms might be significantly increased due to exposure of healthy tissue outside of the target field to secondary neutrons, in particular in proton therapy. Thus far, the radiobiological effects of these neutrons and a comparison with photons on normal breast cells have not been sufficiently characterised. METHODS: MCF10A cells were irradiated with doses of up to 2 Gy with neutrons of different energy spectra and X-rays for comparison. The biological effects of neutrons with a broad energy distribution ( = 5.8 MeV), monoenergetic neutrons (1.2 MeV, 0.56 MeV) and of the mixed field of gamma's and secondary neutrons ( = 70.5 MeV) produced by 190 MeV protons impinging on a water phantom, were analysed. The clonogenic survival and the DNA repair capacity were determined and values of relative biological effectiveness were compared. Furthermore, the influence of radiation on the sphere formation was observed to examine the radiation response of the potential fraction of stem like cells within the MCF10A cell population. RESULTS: X-rays and neutrons caused dose-dependent decreases of survival fractions after irradiations with up to 2 Gy. Monoenergetic neutrons with an energy of 0.56 MeV had a higher effectiveness on the survival fraction with respect to neutrons with higher energies and to the mixed gamma - secondary neutron field induced by proton interactions in water. Similar effects were observed for the DNA repair capacity after exposure to ionising radiation (IR). Both experimental endpoints provided comparable values of the relative biological effectiveness. Significant changes in the sphere formation were notable following the various radiation qualities. CONCLUSION: The present study compared the radiation response of MCF10A cells after IR with neutrons and photons. For the first time it was shown that monoenergetic neutrons with energies around 1 MeV have stronger radiobiological effects on normal human breast cells with respect to X rays, to neutrons with a broad energy distribution ( = 5.8 MeV), and to the mixed gamma - secondary neutron field given by interactions of 190 MeV protons in water. The results of the present study are highly relevant for further investigations of radiation-induced carcinogenesis and are very important in perspective for a better risk assessment after secondary neutron exposure in the field of conventional and proton radiotherapy
    corecore