38 research outputs found

    The rate of telomere loss is related to maximum lifespan in birds

    Get PDF
    Telomeres are highly conserved regions of DNA that protect the ends of linear chromosomes. The loss of telomeres can signal an irreversible change to a cell's state, including cellular senescence. Senescent cells no longer divide and can damage nearby healthy cells, thus potentially placing them at the crossroads of cancer and ageing. While the epidemiology, cellular and molecular biology of telomeres are well studied, a newer field exploring telomere biology in the context of ecology and evolution is just emerging. With work to date focusing on how telomere shortening relates to individual mortality, less is known about how telomeres relate to ageing rates across species. Here, we investigated telomere length in cross-sectional samples from 19 bird species to determine how rates of telomere loss relate to interspecific variation in maximum lifespan. We found that bird species with longer lifespans lose fewer telomeric repeats each year compared with species with shorter lifespans. In addition, phylogenetic analysis revealed that the rate of telomere loss is evolutionarily conserved within bird families. This suggests that the physiological causes of telomere shortening, or the ability to maintain telomeres, are features that may be responsible for, or co-evolved with, different lifespans observed across species.This article is part of the theme issue 'Understanding diversity in telomere dynamics'

    Does optimal foraging theory explain why suburban Florida scrub-jays (Aphelocoma coerulescens) feed their young human-provided food?

    Full text link
    Optimal foraging theory assumes that a forager can adequately assess the quality of its prey and predicts that parents feed their young low-quality foods only when suffering unpredicted reductions in their ability to provision. Wildland Florida scrub-jays feed their young exclusively arthropods, but suburban parents include human-provided foods in the nestling diet, with possible costs in terms of reduced growth and survival. We tested experimentally whether parents feed human-provided foods, given the apparent costs, because: 1) they do not discriminate between food types, 2) they switch to low-quality, abundant foods when natural food availability in the environment is low, or 3) they switch when the time needed to obtain natural food is high. Parents discriminated between natural and human-provided foods by showing a preference for natural foods when rearing young. When the handling time of natural foods was increased experimentally, parents in the suburban and wildland habitats switched to human-provided foods. Supplementation with natural foods increased preference for this food in both habitats. Suburban parents chose more natural foods than wildland parents, suggesting that they have a greater preference for natural foods. Regardless of preferences demonstrated at feeders, parents in both the suburbs and wildlands delivered mostly natural foods to nestlings, independent of natural food availability. Nonetheless, natural foods are likely to be scarcer in the environment than in our experimental tests. Because natural food availability is lower in the suburbs than in the wildland habitat, parents in the suburbs may be forced to switch to human-provided foods when feeding nestlings

    Florida Scrub-jay Nestlings Preyed upon by an Eastern Coachwhip

    No full text

    Florida Scrub-jay Nestlings Preyed upon by an Eastern Coachwhip

    No full text

    Short- and long-term effects of developmental corticosterone exposure on avian physiology,behavioral phenotype,cognition,and fitness: A review

    No full text
    A growing body of evidence from across taxa suggests that exposure to elevated levels of glucocorticoids during early development can have long-term effects upon physiological and behavioral phenotypes. Additionally, there is some, though limited, evidence that similar early exposure can also negatively impact cognitive ability. Following pioneering mammalian studies, several avian studies have revealed that the responsiveness of the hypothalamo-pituitary-adrenal (HPA) axis as an adult can be explained by levels of corticosterone, the avian glucocorticoid, the individual experienced as a nestling or even as an embryo via yolk exposure. Studies also suggest that perinatal exposure to corticosterone can have effects upon avian ā€˜personalitiesā€™ or coping styles, and findings from mammalian studies suggest that these long-term effects are mediated epigenetically via altered expression of relevant DNA sequences. Although a consistent pattern across-species has yet to emerge, recent work in Florida scrub-jays Aphelocoma coerulescens found that baseline corticosterone levels in 11-day-old nestlings explained 84% of the variation in ā€˜personalityā€™ (bold vs. timid) when those individuals were tested approximately seven months later. Nestlings with elevated corticosterone levels were more timid than those individuals that as nestlings experienced relatively low corticosterone levels. Some researchers have suggested that parents might use such mechanisms to ā€˜programā€™ their offspringsā€™ phenotype to best fit prevailing environmental conditions. This review will visit what is known about the links between stressful developmental conditions that result in exposure to elevated corticosterone and the short- and long-term effects of this steroid hormone upon central nervous system function and whether alterations thereof are beneficial, deleterious, or neutral. It will concentrate on examples from birds, although critical supporting studies from the mammalian literature will be included as appropriate [Current Zoology 57 (4): 514ā€“530, 2011]

    Conspecific Egg Predation by Florida Scrub-Jays

    No full text
    Volume: 114Start Page: 136End Page: 13
    corecore