36 research outputs found

    Interleukin-17 producing cells in swine induced by microbiota during the early postnatal period - a brief research report

    Get PDF
    Interleukin-17A (IL-17) is a pro-inflammatory cytokine involved in the immune response to many pathogens playing also a role in certain chronic and autoimmune diseases. The presented study focused on the early postnatal development of IL-17 producing cells in swine. In agreement with previous studies, αβ T-helper (CD3+CD4+) and γδ T (CD3+TCRγδ+) cells were found to be the major producers of IL-17. In newborn conventional piglets, αβ T-helper cells positive for IL-17 were almost undetectable, but their frequency increased markedly with age in all issues examined, i.e., blood, spleen, and mesenteric lymph nodes (MLN). Additional analyses of CD8 and CD27 expression showed that the main αβ T-helper producers of IL-17 has CD8+CD27- phenotype in all tissues. IL-17 positive CD8+CD27+ αβ T-helper subpopulation was found only in blood and spleen. The production of IL17 in CD8-CD27+ αβ T-helper cells was always minor. In contrast, γδ T cells positive for IL-17 did not show a similar age-dependent increase in blood and spleen, whereas they increased in MLN. Because of the age-dependent increase in conventional animals, we included a comparison with germ-free piglets to show that the increase in IL-17 positive cells was clearly depended on the presence of the microbiota as the production in germ-free animals was negligible without any age-dependent increase

    SPI-1-encoded type III secretion system of Salmonella enterica is required for the suppression of porcine alveolar macrophage cytokine expression

    Get PDF
    Genes localized at Salmonella pathogenicity island-1 (SPI-1) are involved in Salmonella enterica invasion of host non-professional phagocytes. Interestingly, in macrophages, SPI-1-encoded proteins, in addition to invasion, induce cell death via activation of caspase-1 which also cleaves proIL-1β and proIL-18, precursors of 2 proinflammatory cytokines. In this study we were therefore interested in whether SPI-1-encoded type III secretion system (T3SS) may influence proinflammatory response of macrophages. To test this hypothesis, we infected primary porcine alveolar macrophages with wild-type S. Typhimurium and S. Enteritidis and their isogenic SPI-1 deletion mutants. ΔSPI1 mutants of both serovars invaded approx. 5 times less efficiently than the wild-type strains and despite this, macrophages responded to the infection with ΔSPI1 mutants by increased expression of proinflammatory cytokines IL-1β, IL-8, TNFα, IL-23α and GM-CSF. Identical macrophage responses to that induced by the ΔSPI1 mutants were also observed to the infection with sipB but not the sipA mutant. The hilA mutant exhibited an intermediate phenotype between the ΔSPI1 mutant and the wild-type S. Enteritidis. Our results showed that the SPI-1-encoded T3SS is required not only for cell invasion but in macrophages also for the suppression of early proinflammatory cytokine expression

    Geodesic Mappings and Their Generalizations

    No full text
    This paper is devoted to further study of the theory of geodesic mappings and their generalizations, including conformal, holomorphically projective, F-planar, and almost geodesic mappings of affinely connected spaces. © 2016, Springer Science+Business Media New York

    Shiga Toxin, Stx2e, Influences the Activity of Porcine Lymphocytes In Vitro

    No full text
    Oedema disease (OD) in piglets is one of the most important pathologies, as it causes significant losses due to the high mortality because of the Shiga toxin family, which produces Escherichia coli (STEC) strains. The main toxin responsible for the characteristic pathologies in pigs is Shiga toxin 2 subtype e (Stx2e). Moreover, there is growing evidence that Stx’s family of toxins also targets immune cells. Therefore, this study evaluated the effect of different concentrations of Stx2e on porcine immune cells. Porcine peripheral blood mononuclear cells were pre-incubated with Stx2e, at three different concentrations (final concentrations of 10, 500, and 5000 CD50/mL) and with a negative control group. Cells were then stimulated with polyclonal mitogens: concanavalin A, phytohemagglutinin, pokeweed mitogen, or lipopolysaccharides. Cell proliferation was assessed by BrdU (or EdU) incorporation into newly created DNA. The activation of the lymphocyte subsets was assessed by the detection of CD25, using flow cytometry. The toxin significantly decreased mitogen-driven proliferation activity, and the effect was partially dose-dependent, with a significant impact on both T and B populations. The percentage of CD25+ cells was slightly lower in the presence of Stx2e in all the defined T cell subpopulations (CD4+, CD8+, and γδTCR+)—in a dose-dependent manner. B cells seemed to be the most affected populations. The negative effects of different concentrations of Stx2e on the immune cells in this study may explain the negative impact of the subclinical course of OD

    Image_2_Interleukin-17 producing cells in swine induced by microbiota during the early postnatal period - a brief research report.png

    No full text
    Interleukin-17A (IL-17) is a pro-inflammatory cytokine involved in the immune response to many pathogens playing also a role in certain chronic and autoimmune diseases. The presented study focused on the early postnatal development of IL-17 producing cells in swine. In agreement with previous studies, αβ T-helper (CD3+CD4+) and γδ T (CD3+TCRγδ+) cells were found to be the major producers of IL-17. In newborn conventional piglets, αβ T-helper cells positive for IL-17 were almost undetectable, but their frequency increased markedly with age in all issues examined, i.e., blood, spleen, and mesenteric lymph nodes (MLN). Additional analyses of CD8 and CD27 expression showed that the main αβ T-helper producers of IL-17 has CD8+CD27- phenotype in all tissues. IL-17 positive CD8+CD27+ αβ T-helper subpopulation was found only in blood and spleen. The production of IL17 in CD8-CD27+ αβ T-helper cells was always minor. In contrast, γδ T cells positive for IL-17 did not show a similar age-dependent increase in blood and spleen, whereas they increased in MLN. Because of the age-dependent increase in conventional animals, we included a comparison with germ-free piglets to show that the increase in IL-17 positive cells was clearly depended on the presence of the microbiota as the production in germ-free animals was negligible without any age-dependent increase.</p

    Image_1_Interleukin-17 producing cells in swine induced by microbiota during the early postnatal period - a brief research report.jpeg

    No full text
    Interleukin-17A (IL-17) is a pro-inflammatory cytokine involved in the immune response to many pathogens playing also a role in certain chronic and autoimmune diseases. The presented study focused on the early postnatal development of IL-17 producing cells in swine. In agreement with previous studies, αβ T-helper (CD3+CD4+) and γδ T (CD3+TCRγδ+) cells were found to be the major producers of IL-17. In newborn conventional piglets, αβ T-helper cells positive for IL-17 were almost undetectable, but their frequency increased markedly with age in all issues examined, i.e., blood, spleen, and mesenteric lymph nodes (MLN). Additional analyses of CD8 and CD27 expression showed that the main αβ T-helper producers of IL-17 has CD8+CD27- phenotype in all tissues. IL-17 positive CD8+CD27+ αβ T-helper subpopulation was found only in blood and spleen. The production of IL17 in CD8-CD27+ αβ T-helper cells was always minor. In contrast, γδ T cells positive for IL-17 did not show a similar age-dependent increase in blood and spleen, whereas they increased in MLN. Because of the age-dependent increase in conventional animals, we included a comparison with germ-free piglets to show that the increase in IL-17 positive cells was clearly depended on the presence of the microbiota as the production in germ-free animals was negligible without any age-dependent increase.</p

    Characterization of Chicken Spleen Transcriptome after Infection with <em>Salmonella enterica</em> Serovar Enteritidis

    Get PDF
    <div><p>In this study we were interested in identification of new markers of chicken response to <em>Salmonella</em> Enteritidis infection. To reach this aim, gene expression in the spleens of naive chickens and those intravenously infected with <em>S</em>. Enteritidis with or without previous oral vaccination was determined by 454 pyrosequencing of splenic mRNA/cDNA. Forty genes with increased expression at the level of transcription were identified. The most inducible genes encoded avidin (AVD), extracellular fatty acid binding protein (EXFABP), immune responsive gene 1 (IRG1), chemokine ah221 (AH221), trappin-6-like protein (TRAP6) and serum amyloid A (SAA). Using cDNA from sorted splenic B-lymphocytes, macrophages, CD4, CD8 and γδ T-lymphocytes, we found that the above mentioned genes were preferentially expressed in macrophages. AVD, EXFABP, IRG1, AH221, TRAP6 and SAA were induced also in the cecum of chickens orally infected with <em>S</em>. Enteritidis on day 1 of life or day 42 of life. Unusual results were obtained for the immunoglobulin encoding transcripts. Prior to the infection, transcripts coding for the constant parts of IgM, IgY, IgA and Ig light chain were detected in B-lymphocytes. However, after the infection, immunoglobulin encoding transcripts were expressed also by T-lymphocytes and macrophages. Expression of AVD, EXFABP, IRG1, AH221, TRAP6, SAA and all immunoglobulin genes can be therefore used for the characterization of the course of <em>S</em>. Enteritidis infection in chickens.</p> </div
    corecore