2,022 research outputs found
Renormalized non-modal theory of the kinetic drift instability of plasma shear flows
The linear and renormalized nonlinear kinetic theory of drift instability of
plasma shear flow across the magnetic field, which has the Kelvin's method of
shearing modes or so-called non-modal approach as its foundation, is developed.
The developed theory proves that the time-dependent effect of the finite ion
Larmor radius is the key effect, which is responsible for the suppression of
drift turbulence in an inhomogeneous electric field. This effect leads to the
non-modal decrease of the frequency and growth rate of the unstable drift
perturbations with time. We find that turbulent scattering of the ion gyrophase
is the dominant effect, which determines extremely rapid suppression of drift
turbulence in shear flow
Renormalized theory of the ion cyclotron turbulence in magnetic field--aligned plasma shear flow
The analytical treatment of nonlinear evolution of the shear-flow-modified
current driven ion cyclotron instability and shear-flow-driven ion cyclotron
kinetic instabilities of magnetic field--aligned plasma shear flow is
presented. Analysis is performed on the base of the nonlinear dispersion
equation, which accounts for a new combined effect of plasma turbulence and
shear flow. It consists in turbulent scattering of ions across the shear flow
with their convection by shear flow and results in enhanced nonlinear
broadening of ion cyclotron resonances. This effect is found to lead to the
saturation of ion cyclotron instabilities as well as to the development of
nonlinear shear flow driven ion cyclotron instability. 52.35.RaComment: 21 page
Effect of temperature and strain on the formation of elongated fine grained structure in middle carbon steel during large plastic deformation
The influence of deformation temperature and strain rate on the mechanisms of elongated fine grain (EFG) formation in the medium-carbon steel was studied. Compression tests were carried out at the temperatures in range of 673-973K at three different strain rates: 10-2, 1.3*10-3 and 10-4 s-1. Presence of two temperature intervals with different dominant mechanisms of deformation was identified: low temperature (673-823K) interval and high temperature (873-973K) interval. Microstructure evolution during deformation at strain rate of 1.3*10-3 s-1 and different temperatures was studied. Also was investigated the microstructure and mechanical properties of steel after warm plastic deformatio
Ion-kinetic D'Angelo mode
An extension of hydrodynamic D'Angelo mode of inhomogeneous sheared plasma
flow along the magnetic field into the short-wavelength limit, where the
hydrodynamic treatment is not valid, has been considered. We find that D'Angelo
mode in this wavelength range is excited by inverse ion Landau damping and
becomes the shear flow driven ion-kinetic mode.Comment: 9 pages, 1 figur
Summary of the CMS Discovery Potential for the MSSM SUSY Higgses
This work summarises the present understanding of the expected MSSM SUSY
Higgs reach for CMS. Many of the studies presented here result from detailed
detector simulations incorporating final CMS detector design and response. With
30 fb-1 the h -> gamma,gamma and h -> bb channels allow to cover most of the
MSSM parameter space. For the massive A,H,H+ MSSM Higgs states the channels A,H
-> tau,tau and H+ -> tau,nu turn out to be the most profitable ones in terms of
mass reach and parameter space coverage. Consequently CMS has made a big effort
to trigger efficiently on taus. Provided neutralinos and sleptons are not too
heavy, there is an interesting complementarity in the reaches for A,H ->
tau,tau and A,H -> chi,chi.Comment: 19 pages, 27 figure
Induced Scattering and Two-Photon Absorption of Alfven Waves with Arbitrary Propagation Angles
The equation for temporary evolution of spectral energy of collisionless
Alfven waves is derived in framework of weak turbulence theory. The main
nonlinear processes for such conditions are induced scattering and two quantum
absorption of Alfven waves by thermal ions. The equation for velocity
distribution of thermal particles is derived that describes diffusion in
momentum space due to this nonlinear processes. Comparison is done with the
results of another authors. Results obtained are qualitatively differ from the
ones obtained for the case of Alfven waves propagation along mean magnetic
field.Comment: 8 page
- …