2,567 research outputs found

    Antiferromagnetic interactions in single crystalline Zn1-xCoxO thin films

    Full text link
    In a rather contradictory situation regarding magnetic data on Co-doped ZnO, we have succeeded in fabricating high-quality single crystalline Zn1-xCoxO (x=0.003-0.07) thin films. This gives us the possibility, for the first time, to examine the it intrinsic magnetic properties of ZnO:Co at a quantitative level and therefore to address several unsolved problems, the major one being the nature of the Co-Co interaction in the ZnO structure.Comment: 4 pages, 4 figures,accepted for publication in PR

    Semiclassical treatment of logarithmic perturbation theory

    Get PDF
    The explicit semiclassical treatment of logarithmic perturbation theory for the nonrelativistic bound states problem is developed. Based upon ℏ\hbar-expansions and suitable quantization conditions a new procedure for deriving perturbation expansions for the one-dimensional anharmonic oscillator is offered. Avoiding disadvantages of the standard approach, new handy recursion formulae with the same simple form both for ground and exited states have been obtained. As an example, the perturbation expansions for the energy eigenvalues of the harmonic oscillator perturbed by λx6\lambda x^{6} are considered.Comment: 6 pages, LATEX 2.09 using IOP style

    Langmuir wave linear evolution in inhomogeneous nonstationary anisotropic plasma

    Full text link
    Equations describing the linear evolution of a non-dissipative Langmuir wave in inhomogeneous nonstationary anisotropic plasma without magnetic field are derived in the geometrical optics approximation. A continuity equation is obtained for the wave action density, and the conditions for the action conservation are formulated. In homogeneous plasma, the wave field E universally scales with the electron density N as E ~ N^{3/4}, whereas the wavevector evolution varies depending on the wave geometry

    A sufficient condition for a number to be the order of a nonsingular derivation of a Lie algebra

    Full text link
    A study of the set N_p of positive integers which occur as orders of nonsingular derivations of finite-dimensional non-nilpotent Lie algebras of characteristic p>0 was initiated by Shalev and continued by the present author. The main goal of this paper is to show the abundance of elements of N_p. Our main result shows that any divisor n of q-1, where q is a power of p, such that n≄(p−1)1/p(q−1)1−1/(2p)n\ge (p-1)^{1/p} (q-1)^{1-1/(2p)}, belongs to N_p. This extends its special case for p=2 which was proved in a previous paper by a different method.Comment: 10 pages. This version has been revised according to a referee's suggestions. The additions include a discussion of the (lower) density of the set N_p, and the results of more extensive machine computations. Note that the title has also changed. To appear in Israel J. Mat

    Matter-positronium interaction: An exact diagonalization study of the He atom - positronium system

    Full text link
    The many-body system comprising a He nucleus, three electrons, and a positron has been studied using the exact diagonalization technique. The purpose has been to clarify to which extent the system can be considered as a distinguishable positronium (Ps) atom interacting with a He atom and, thereby, to pave the way to a practical atomistic modeling of Ps states and annihilation in matter. The maximum value of the distance between the positron and the nucleus is constrained and the Ps atom at different distances from the nucleus is identified from the electron and positron densities, as well as from the electron-positron distance and center-of-mass distributions. The polarization of the Ps atom increases as its distance from the nucleus decreases. A depletion of the He electron density, particularly large at low density values, has been observed. The ortho-Ps pick-off annihilation rate calculated as the overlap of the positron and the free He electron densities has to be corrected for the observed depletion, specially at large pores/voids.Comment: 18 pages, 8 figure

    Macro- and micro-strain in GaN nanowires on Si(111)

    Full text link
    We analyze the strain state of GaN nanowire ensembles by x-ray diffraction. The nanowires are grown by molecular beam epitaxy on a Si(111) substrate in a self-organized manner. On a macroscopic scale, the nanowires are found to be free of strain. However, coalescence of the nanowires results in micro-strain with a magnitude from +-0.015% to +-0.03%.This micro-strain contributes to the linewidth observed in low-temperature photoluminescence spectra

    Magnetic Anisotropy of Co2+ as Signature of Intrinsic Ferromagnetism in ZnO:Co

    Full text link
    We report on the magnetic properties of thoroughly characterized Zn1-xCoxO epitaxial thin films, with low Co concentration, x=0.003-0.005. Magnetic and EPR measurements, combined with crystal field theory, reveal that isolated Co2+ ions in ZnO possess a strong single ion anisotropy which leads to an "easy plane" ferromagnetic state when the ferromagnetic Co-Co interaction is considered. We suggest that the peculiarities of the magnetization process of this state can be viewed as a signature of intrinsic ferromagnetism in ZnO:Co materials.Comment: 4 pages, 4 figure

    Surface roughness effect on ultracold neutron interaction with a wall and implications for computer simulations

    Get PDF
    We review the diffuse scattering and the loss coefficient in ultracold neutron reflection from slightly rough surfaces, report a surprising reduction in loss coefficient due to roughness, and discuss the possibility of transition from quantum treatment to ray optics. The results are used in a computer simulation of neutron storage in a recent neutron lifetime experiment that re-ported a large discrepancy of neutron lifetime with the current particle data value. Our partial re-analysis suggests the possibility of systematic effects that were not included in this publication.Comment: 39 pages, 9 figures; additional calculations include

    Construction of Self-Dual Integral Normal Bases in Abelian Extensions of Finite and Local Fields

    Get PDF
    Let F/EF/E be a finite Galois extension of fields with abelian Galois group Γ\Gamma. A self-dual normal basis for F/EF/E is a normal basis with the additional property that TrF/E(g(x),h(x))=ήg,hTr_{F/E}(g(x),h(x))=\delta_{g,h} for g,h∈Γg,h\in\Gamma. Bayer-Fluckiger and Lenstra have shown that when char(E)≠2char(E)\neq 2, then FF admits a self-dual normal basis if and only if [F:E][F:E] is odd. If F/EF/E is an extension of finite fields and char(E)=2char(E)=2, then FF admits a self-dual normal basis if and only if the exponent of Γ\Gamma is not divisible by 44. In this paper we construct self-dual normal basis generators for finite extensions of finite fields whenever they exist. Now let KK be a finite extension of \Q_p, let L/KL/K be a finite abelian Galois extension of odd degree and let \bo_L be the valuation ring of LL. We define AL/KA_{L/K} to be the unique fractional \bo_L-ideal with square equal to the inverse different of L/KL/K. It is known that a self-dual integral normal basis exists for AL/KA_{L/K} if and only if L/KL/K is weakly ramified. Assuming p≠2p\neq 2, we construct such bases whenever they exist
    • 

    corecore