2,484 research outputs found

    Diagnosis of weaknesses in modern error correction codes: a physics approach

    Full text link
    One of the main obstacles to the wider use of the modern error-correction codes is that, due to the complex behavior of their decoding algorithms, no systematic method which would allow characterization of the Bit-Error-Rate (BER) is known. This is especially true at the weak noise where many systems operate and where coding performance is difficult to estimate because of the diminishingly small number of errors. We show how the instanton method of physics allows one to solve the problem of BER analysis in the weak noise range by recasting it as a computationally tractable minimization problem.Comment: 9 pages, 8 figure

    All-electrical time-resolved spin generation and spin manipulation in n-InGaAs

    Full text link
    We demonstrate all-electrical spin generation and subsequent manipulation by two successive electric field pulses in an n-InGaAs heterostructure in a time-resolved experiment at zero external magnetic field. The first electric field pulse along the [11ˉ0][1\bar10] crystal axis creates a current induced spin polarization (CISP) which is oriented in the plane of the sample. The subsequent electric field pulse along [110] generates a perpendicular magnetic field pulse leading to a coherent precession of this spin polarization with 2-dimensional electrical control over the final spin orientation. Spin precession is probed by time-resolved Faraday rotation. We determine the build-up time of CISP during the first field pulse and extract the spin dephasing time and internal magnetic field strength during the spin manipulation pulse.Comment: 5 pages, 4 figure

    Integrability and action operators in quantum Hamiltonian systems

    Get PDF
    For a (classically) integrable quantum mechanical system with two degrees of freedom, the functional dependence H^=HQ(J^1,J^2)\hat{H}=H_Q(\hat{J}_1,\hat{J}_2) of the Hamiltonian operator on the action operators is analyzed and compared with the corresponding functional relationship H(p1,q1;p2,q2)=HC(J1,J2)H(p_1,q_1;p_2,q_2) = H_C(J_1,J_2) in the classical limit of that system. The former is shown to converge toward the latter in some asymptotic regime associated with the classical limit, but the convergence is, in general, non-uniform. The existence of the function H^=HQ(J^1,J^2)\hat{H}=H_Q(\hat{J}_1,\hat{J}_2) in the integrable regime of a parametric quantum system explains empirical results for the dimensionality of manifolds in parameter space on which at least two levels are degenerate. The comparative analysis is carried out for an integrable one-parameter two-spin model. Additional results presented for the (integrable) circular billiard model illuminate the same conclusions from a different angle.Comment: 9 page

    Search for Non-Triggered Gamma Ray Bursts in the BATSE Continuous Records: Preliminary Results

    Get PDF
    We present preliminary results of an off-line search for non-triggered gamma-ray bursts (GRBs) in the BATSE daily records for about 5.7 years of observations. We found more GRB-like events than the yield of the similar search of Kommers et al. (1998) and extended the Log N - log P distribution down to \sim 0.1 ph cm2^{-2} s1^{-1}. The indication of a turnover of the log N - log P at a small P is not confirmed: the distribution is straight at 1.5 decades with the power law index -.6 and cannot be fitted with a standard candle cosmological model.Comment: 4 pages, LaTeX, to appear in Proceedings "Gamma Ray Bursts in the Afterglow Era", Rome, November 1998, A&AS, 199

    Vacuum energy induced by an impenetrable flux tube of finite radius

    Full text link
    We consider the effect of the magnetic field background in the form of a tube of the finite transverse size on the vacuum of the quantized charged massive scalar field which is subject to the Dirichlet boundary condition at the edge of the tube. The vacuum energy is induced, being periodic in the value of the magnetic flux enclosed in the tube. Our previous study in J. Phys. A: Vol.43, 175401 (2010) is extended to the case of smaller radius of the tube and larger distances from it. The dependence of the vacuum energy density on the distance from the tube and on the coupling to the space-time curvature scalar is comprehensively analyzed.Comment: 11 pages, 8 figures, journal version, abstract extended. arXiv admin note: substantial text overlap with arXiv:0911.287

    Semiclassical treatment of logarithmic perturbation theory

    Get PDF
    The explicit semiclassical treatment of logarithmic perturbation theory for the nonrelativistic bound states problem is developed. Based upon \hbar-expansions and suitable quantization conditions a new procedure for deriving perturbation expansions for the one-dimensional anharmonic oscillator is offered. Avoiding disadvantages of the standard approach, new handy recursion formulae with the same simple form both for ground and exited states have been obtained. As an example, the perturbation expansions for the energy eigenvalues of the harmonic oscillator perturbed by λx6\lambda x^{6} are considered.Comment: 6 pages, LATEX 2.09 using IOP style
    corecore