4 research outputs found

    Observations of the galactic plane by the zodiacal infrared project

    Get PDF
    The two rocket flights of the Zodiacal Infrared Project (ZIP), flown 18 August 1980 and 31 July 1981, were intended to provide data on the near-infrared thermal emission of the interplanetary dust cloud over a broad range of ecliptic coordinates (latitudes -60 to +85 degrees, solar elongation angles 22 to 90 degrees and 140 to 180 degrees). In addition, their multiple crossings of the Galactic plane provided low resolution spectral data (delta lambda/lambda ranging from 1. to 0.1, for effective wavelengths from 3 to 30 microns) for most of the first quadrant (longitudes 30 to 100 degrees). Examples are displayed. Having made a thorough reanalysis of the calibration of the ZIP database, researchers present the salient features of the Galactic plane as observed by ZIP. The binned, in-plane data, corrected for zodiacal emission, generally show an exponential decrease with increasing longitude. The fitted exponential scale-length is 0.038/degree, and can be inverted to derive a radial density profile. Channel ratios are converted to temperatures by using model spectra in which thermal emitters with emissivity approx. 1/lambda are convolved with the filter responses. The results for channels 5 (11 microns) and 12 (21 microns) are shown, along with similarly derived temperatures from Infrared Astronomy Satellite (IRAS) 12 microns and 25 microns data. The ZIP data show little variation with longitude, consistent with IRAS results. A narrow spectral feature at 13 microns appears consistently in data for the plane (uncorrected for zodiacal emission). However, this is strongly contaminated by calibration problems for channel 8. Researchers suggest that residual emission at 13 microns arises from the (NeII) line at 12.8 microns
    corecore