363 research outputs found

    Arginine methylation of yeast mRNA-binding protein Npl3 directly affects its function, nuclear export, and intranuclear protein interactions

    Get PDF
    Arginine methylation can affect both nucleocytoplasmic transport and protein-protein interactions of RNA-binding proteins. These effects are seen in cells that lack the yeast hnRNP methyltransferase (HMT1), raising the question of whether effects on specific proteins are direct or indirect. The presence of multiple arginines in individual methylated proteins also raises the question of whether overall methylation or methylation of a subset of arginines affects protein function. We have used the yeast mRNA-binding protein Npl3 to address these questions in vivo. Matrix-assisted laser desorption/ionization Fourier transform mass spectrometry was used to identify 17 methylated arginines in Npl3 purified from yeast: whereas 10 Arg-Gly-Gly (RGG) tripeptides were exclusively dimethylated, variable levels off methylation were found for 5 RGG and 2 RG motif arginines. We constructed a set of Npl3 proteins in which subsets of the RGG arginines were mutated to lysine. Expression of these mutant proteins as the sole form of Npl3 specifically affected growth of a strain that requires Hmtl. Although decreased growth generally correlated with increased numbers of Arg-to-Lys mutations, lysine substitutions in the N terminus of the RGG domain showed more severe effects. Npl3 with all 15 RGG arginines mutated to lysine exited the nucleus independent of Hmtl, indicating a direct effect of methylation on Npl3 transport. These mutations also resulted in a decreased, methylation-independent interaction of Npl3 with transcription elongation factor Tho2 and inhibited Npl3 self-association. These results support a model in which arginine methylation facilitates Npl3 export directly by weakening contacts with nuclear proteins. Ā© 2005 by The American Society for Biochemistry and Molecular Biology, Inc

    Markov analysis of stochastic resonance in a periodically driven integrate-fire neuron

    Full text link
    We model the dynamics of the leaky integrate-fire neuron under periodic stimulation as a Markov process with respect to the stimulus phase. This avoids the unrealistic assumption of a stimulus reset after each spike made in earlier work and thus solves the long-standing reset problem. The neuron exhibits stochastic resonance, both with respect to input noise intensity and stimulus frequency. The latter resonance arises by matching the stimulus frequency to the refractory time of the neuron. The Markov approach can be generalized to other periodically driven stochastic processes containing a reset mechanism.Comment: 23 pages, 10 figure

    Children's trust and the development of prosocial behavior

    Get PDF
    This study examined the role of childrenā€™s trust beliefs and trustworthiness in the development of prosocial behavior using data from four waves of a longitudinal study in a large, ethnically diverse sample of children in Switzerland (mean age = 8.11 years at Time 1, N = 1,028). Prosocial behavior directed towards peers was measured at all assessment points by teacher reports. Childrenā€™s trust beliefs and their trustworthiness with peers were assessed and calculated by a social relations analysis at the first assessment point using childrenā€™s reports of the extent to which classmates kept promises. In addition, teacher reports of childrenā€™s trustworthiness were assessed at all four assessment points. Latent growth curve modeling yielded a decrease in prosocial behavior over time. Peer- and teacher-reported trustworthiness predicted higher initial levels of prosocial behavior, and peer-reported trustworthiness predicted less steep decreases in prosocial behavior over time. Autoregressive cross-lagged analysis also revealed bidirectional longitudinal associations between teacher-reported trustworthiness and prosocial behavior. We discuss the implications of the findings for research on the role of trust in the development of childrenā€™s prosocial behavior

    Autosomal dominant hereditary spastic paraplegia: Novel mutations in the REEP1 gene (SPG31)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations in the <it>SPG4 </it>gene (spastin) and in the <it>SPG3A </it>gene (atlastin) account for the majority of 'pure' autosomal dominant form of hereditary spastic paraplegia (HSP). Recently, mutations in the <it>REEP1 </it>gene were identified to cause autosomal dominant HSP type SPG31. The purpose of this study was to determine the prevalence of <it>REEP1 </it>mutations in a cohort of 162 unrelated Caucasian index patients with 'pure' HSP and a positive family history (at least two persons per family presented symptoms).</p> <p>Methods</p> <p>162 patients were screened for mutations by, both, DHPLC and direct sequencing.</p> <p>Results</p> <p>Ten mutations were identified in the <it>REEP1 </it>gene, these included eight novel mutations comprising small insertions/deletions causing frame shifts and subsequently premature stop codons, one nonsense mutation and one splice site mutation as well as two missense mutations. Both missense mutations and the splice site mutation were not identified in 170 control subjects.</p> <p>Conclusion</p> <p>In our HSP cohort we found pathogenic mutations in 4.3% of cases with autosomal dominant inheritance. Our results confirm the previously observed mutation range of 3% to 6.5%, respectively, and they widen the spectrum of <it>REEP1 </it>mutations.</p

    Learning intrinsic excitability in medium spiny neurons

    Full text link
    We present an unsupervised, local activation-dependent learning rule for intrinsic plasticity (IP) which affects the composition of ion channel conductances for single neurons in a use-dependent way. We use a single-compartment conductance-based model for medium spiny striatal neurons in order to show the effects of parametrization of individual ion channels on the neuronal activation function. We show that parameter changes within the physiological ranges are sufficient to create an ensemble of neurons with significantly different activation functions. We emphasize that the effects of intrinsic neuronal variability on spiking behavior require a distributed mode of synaptic input and can be eliminated by strongly correlated input. We show how variability and adaptivity in ion channel conductances can be utilized to store patterns without an additional contribution by synaptic plasticity (SP). The adaptation of the spike response may result in either "positive" or "negative" pattern learning. However, read-out of stored information depends on a distributed pattern of synaptic activity to let intrinsic variability determine spike response. We briefly discuss the implications of this conditional memory on learning and addiction.Comment: 20 pages, 8 figure

    Imaging Mass Spectrometry: Hype or Hope?

    Get PDF
    Imaging mass spectrometry is currently receiving a significant amount of attention in the mass spectrometric community. It offers the potential of direct examination of biomolecular patterns from cells and tissue. This makes it a seemingly ideal tool for biomedical diagnostics and molecular histology. It is able to generate beautiful molecular images from a large variety of surfaces, ranging from cancer tissue sections to polished cross sections from old-master paintings. What are the parameters that define and control the implications, challenges, opportunities, and (im)possibilities associated with the application of imaging MS to biomedical tissue studies. Is this just another technological hype or does it really offer the hope to gain new insights in molecular processes in living tissue? In this critical insight this question is addressed through the discussion of a number of aspects of MS imaging technology and sample preparation that strongly determine the outcome of imaging MS experiments
    • ā€¦
    corecore