3 research outputs found

    Automated quantum error mitigation based on probabilistic error reduction

    Full text link
    Current quantum computers suffer from a level of noise that prohibits extracting useful results directly from longer computations. The figure of merit in many near-term quantum algorithms is an expectation value measured at the end of the computation, which experiences a bias in the presence of hardware noise. A systematic way to remove such bias is probabilistic error cancellation (PEC). PEC requires a full characterization of the noise and introduces a sampling overhead that increases exponentially with circuit depth, prohibiting high-depth circuits at realistic noise levels. Probabilistic error reduction (PER) is a related quantum error mitigation method that systematically reduces the sampling overhead at the cost of reintroducing bias. In combination with zero-noise extrapolation, PER can yield expectation values with an accuracy comparable to PEC.Noise reduction through PER is broadly applicable to near-term algorithms, and the automated implementation of PER is thus desirable for facilitating its widespread use. To this end, we present an automated quantum error mitigation software framework that includes noise tomography and application of PER to user-specified circuits. We provide a multi-platform Python package that implements a recently developed Pauli noise tomography (PNT) technique for learning a sparse Pauli noise model and exploits a Pauli noise scaling method to carry out PER.We also provide software tools that leverage a previously developed toolchain, employing PyGSTi for gate set tomography and providing a functionality to use the software Mitiq for PER and zero-noise extrapolation to obtain error-mitigated expectation values on a user-defined circuit.Comment: 11 pages, 9 figure

    Automated quantum error mitigation based on probabilistic error reduction

    Get PDF
    Current quantum computers suffer from a level of noise that prohibits extracting useful results directly from longer computations. The figure of merit in many near-term quantum algorithms is an expectation value measured at the end of the computation, which experiences a bias in the presence of hardware noise. A systematic way to remove such bias is probabilistic error cancellation (PEC). PEC requires a full characterization of the noise and introduces a sampling overhead that increases exponentially with circuit depth, prohibiting high-depth circuits at realistic noise levels. Probabilistic error reduction (PER) is a related quantum error mitigation method that systematically reduces the sampling overhead at the cost of reintroducing bias. In combination with zero-noise extrapolation, PER can yield expectation values with an accuracy comparable to PEC.Noise reduction through PER is broadly applicable to near-term algorithms, and the automated implementation of PER is thus desirable for facilitating its widespread use. To this end, we present an automated quantum error mitigation software framework that includes noise tomography and application of PER to user-specified circuits. We provide a multi-platform Python package that implements a recently developed Pauli noise tomography (PNT) technique for learning a sparse Pauli noise model and exploits a Pauli noise scaling method to carry out PER.We also provide software tools that leverage a previously developed toolchain, employing PyGSTi for gate set tomography and providing a functionality to use the software Mitiq for PER and zero-noise extrapolation to obtain error-mitigated expectation values on a user-defined circuit.This is a pre-print of the article McDonough, Benjamin, Andrea Mari, Nathan Shammah, Nathaniel T. Stemen, Misty Wahl, William J. Zeng, and Peter P. Orth. "Automated quantum error mitigation based on probabilistic error reduction." arXiv preprint arXiv:2210.08611 (2022). DOI: 10.48550/arXiv.2210.08611. Copyright 2022 The Authors. Posted with permission

    Mitiq : a software package for error mitigation on noisy quantum computers

    Get PDF
    We introduce Mitiq, a Python package for error mitigation on noisy quantum computers. Error mitigation techniques can reduce the impact of noise on near-term quantum computers with minimal overhead in quantum resources by relying on a mixture of quantum sampling and classical post-processing techniques. Mitiq is an extensible toolkit of different error mitigation methods, including zero-noise extrapolation, probabilistic error cancellation, and Clifford data regression. The library is designed to be compatible with generic backends and interfaces with different quantum software frameworks. We describe Mitiq using code snippets to demonstrate usage and discuss features and contribution guidelines. We present several examples demonstrating error mitigation on IBM and Rigetti superconducting quantum processors as well as on noisy simulators
    corecore