57 research outputs found

    Matrix-associated autologous chondrocyte transplantation in a compartmentalized early stage of osteoarthritis

    Get PDF
    SummaryObjectiveCartilage restoration in joints with an early stage of osteoarthritis (OA) is an important clinical challenge. In this study, a compartmentalized, early-stage OA was generated surgically in sheep stifle joints, and this model was used to evaluate a matrix-associated cell transplantation approach for cartilage repair.MethodEighteen sheep were operated twice. During the first operation, a unicompartmental OA in a stable joint was induced by creating a critical-size defect. The second operation served as a regeneration procedure. The eighteen sheep were divided into three groups. One group was treated with spongialization (SPONGIO), while the two others had spongialization followed by implantation of a hyaluronan matrix with (MACT) or without chondrocytes (MATRIX). The follow-up took place 4 months after the second operation. Gross Assessment of Joint Changes score and Brittberg score were used for the macroscopic evaluation, Mankin score, O'Driscoll score, and immunohistochemistry for collagen type I and type II for histological evaluation.ResultsThe MACT group achieved significantly better results in both macroscopic and histological examinations. In the regeneration area, a Mankin score of 7.88 (6.20; 9.55) [mean (upper 95% confidence interval; lower 95% confidence interval)] was reached in the MACT group, 10.38 (8.03; 12.72) in the MATRIX group, and 10.33 (8.80; 11.87) in the SPONGIO group. The O'Driscoll score revealed a highly significant difference in the degree of defect repair: 15.92 (14.58; 17.25) for the MACT group compared to the two other groups [5.04 (1.21; 8.87) MATRIX and 6.58 (5.17; 8.00) SPONGIO; P < 0.0001].ConclusionThis study demonstrates promising results toward the development of a biological regeneration technique for early-stage OA

    Cartilage repair of the ankle: first results of T2 mapping at 7.0 T after microfracture and matrix associated autologous cartilage transplantation

    Get PDF
    SummaryBackgroundBoth microfracture (MFX) and matrix associated autologous cartilage transplantation (MACT) are currently used to treat cartilage defects of the talus. T2 mapping of the ankle at 7 T has the potential to assess the collagen fibril network organization of the native hyaline cartilage and of the repair tissue (RT). This study provides first results regarding the properties of cartilage RT after MFX (mean follow-up: 113.8 months) and MACT (65.4 months).MethodsA multi-echo spin-echo sequence was used at 7 T to assess T2 maps in 10 volunteer cases, and in 10 cases after MFX and MACT each. Proton weighted morphological images and clinical data were used to ensure comparable baseline criteria.ResultsA significant zonal variation of T2 was found in the volunteers. T2 of the superficial and the deep layer was 39.3 ± 5.9 ms and 21.1 ± 3.1 ms (zonal T2 index calculated by superficial T2/deep T2: 1.87 ± 0.2, P < 0.001). In MFX, T2 of the reference cartilage was 37.4 ± 5.0 ms and 25.3 ± 3.5 ms (1.51 ± 0.3, P < 0.001). In the RT, T2 was 43.4 ± 10.5 ms and 36.3 ± 7.7 ms (1.20 ± 0.2, P = 0.009). In MACT, T2 of the reference cartilage was 39.0 ± 9.1 ms and 27.1 ± 6.6 ms (1.45 ± 0.2, P < 0.001). In the RT, T2 was 44.6 ± 10.4 ms and 38.6 ± 7.3 ms (1.15 ± 0.1, P = 0.003). The zonal RT T2 variation differed significantly from the reference cartilage in both techniques (MFX: P = 0.004, MACT: P = 0.001).ConclusionT2 mapping at 7 T allows for the quantitative assessment of the collagen network organization of the talus. MACT and MFX yielded RT with comparable T2 properties
    • …
    corecore