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Cartilage repair of the ankle: first results of T2 mapping at 7.0 T after microfracture
and matrix associated autologous cartilage transplantation
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Background: Both microfracture (MFX) and matrix associated autologous cartilage transplantation
(MACT) are currently used to treat cartilage defects of the talus. T2 mapping of the ankle at 7 T has the
potential to assess the collagen fibril network organization of the native hyaline cartilage and of the
repair tissue (RT). This study provides first results regarding the properties of cartilage RT after MFX
(mean follow-up: 113.8 months) and MACT (65.4 months).
Methods: A multi-echo spin-echo sequence was used at 7 T to assess T2 maps in 10 volunteer cases, and
in 10 cases after MFX and MACT each. Protonweighted morphological images and clinical data were used
to ensure comparable baseline criteria.
Results: A significant zonal variation of T2 was found in the volunteers. T2 of the superficial and the deep
layer was 39.3 � 5.9 ms and 21.1 � 3.1 ms (zonal T2 index calculated by superficial T2/deep T2: 1.87 � 0.2,
P < 0.001). In MFX, T2 of the reference cartilage was 37.4 � 5.0 ms and 25.3 � 3.5 ms (1.51 � 0.3,
P < 0.001). In the RT, T2 was 43.4 � 10.5 ms and 36.3 � 7.7 ms (1.20 � 0.2, P ¼ 0.009). In MACT, T2 of the
reference cartilage was 39.0 � 9.1 ms and 27.1 � 6.6 ms (1.45 � 0.2, P < 0.001). In the RT, T2 was
44.6 � 10.4 ms and 38.6 � 7.3 ms (1.15 � 0.1, P ¼ 0.003). The zonal RT T2 variation differed significantly
from the reference cartilage in both techniques (MFX: P ¼ 0.004, MACT: P ¼ 0.001).
Conclusion: T2 mapping at 7 T allows for the quantitative assessment of the collagen network organi-
zation of the talus. MACT and MFX yielded RT with comparable T2 properties.

� 2012 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Introduction

Defects of the talar cartilage layer are frequent; one has to
expect a high incidence of osteochondral lesions after ankle joint
fractures, and magnetic resonance imaging (MRI) results suggest
that as many as 50% of patients with twisted ankles and associated
ligament damage will have concomitant cartilage lesions1,2.
Conversely, up to 15% of cases with osteochondral defects have no
history of trauma1, so that the incidence of cartilage damage in the
ankle often is underestimated3. In symptomatic patients, the
surgical treatment is considered the gold standard in therapy;
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various techniques have been used in the ankle, however, the
microfracture technique (MFX) is considered the most effective
option at this time4. MFX introduces pluripotent cells from the
bone marrow into the defect that form a blood clot which will
eventually form repair tissue (RT), filling and stabilizing the defect5.
High rates of excellent outcome at short term, as well as stable mid-
term results have been reported after MFX in the ankle6,7. Still,
there is concern if the RT quality is sufficient in the long term8, as
histological analyses in the knee and in animal models indicate that
MFX mainly results in fibrous RT9e13.

In the knee, several studies demonstrate that autologous
chondrocyte transplantation (ACT) techniques are more likely to
result in hyaline-like RT than MFX, and that this leads to better
clinical outcome at mid-term9,14e16. Based on this rationale, there is
an incentive to apply ACT and matrix associated autologous
cartilage transplantation (MACT) to the ankle4,17e20.

It should be noted that talar cartilage is generally deemed to
have a better potential to regenerate than knee cartilage21. At this
ublished by Elsevier Ltd. All rights reserved.
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time, there is not sufficient evidence available to determine if the
higher morbidity associated with ACT techniques in the ankle is
actually warranted by a clinically relevant superiority when
compared to MFX in the long term.

Histology remains the gold standard for RT quality assessment,
however, recent advance in MRI has yielded techniques that allow
for the quantitative measurement of specific components of the
cartilage and RT ultra-structure22.

T2 mapping has been demonstrated to be valuable for the
evaluation of cartilage RT in several studies. Briefly, both free water
and water molecules bound to cartilage collagen fibers contribute
to T223. Whereas increased free water leads to a general increase of
T2, the orientation dependent relaxation component of T2 allows
for the visualization of the collagen fibril arrangement both in
articular cartilage and in cartilage RT13,24.

In the knee, MFX RT has lower T2 than native hyaline reference
cartilage, and that there is a lack of T2 variation across the layer
when compared to reference cartilage and to MACT RT, suggesting
that MACT yields RT with a higher degree of collagen fibril
organization25.

In contrast, the first measurements at 3 T in the ankle showed
the mean T2 of RT was comparable to that of the reference cartilage
both after MFX and after MACT26,27, albeit the resolution and
signal-to-noise (SNR) achieved at 3 T allowed for a global assess-
ment of the whole extent of the cartilage layer only. At this time,
there are no quantitative data on the zonal organization of cartilage
RT after either technique in the ankle.

With the introduction of 7 T ultra-high field whole body MR
units and dedicated multi-channel surface coils into clinical
research, a considerably higher SNR and resolution is achievable
within clinically feasible scan times. The aim of this study was to
use an optimized T2 mapping protocol to assess healthy talar
cartilage in volunteers, and to acquire first data on the collagen
organization of cartilage RT after MFX and after MACT in the ankle.

Materials and methods

Study participants and clinical evaluation

The study protocol was approved by the local Ethics Committee,
and informed consent was obtained from all participants prior to
inclusion into the study. Ten asymptomatic ankles of eight volun-
teers with 100 points in the American Orthopaedic Foot and Ankle
Society (AOFAS) score, without any history of trauma, surgery or
malalignment in the clinical examination were recruited for the
optimization of the T2 mapping protocol and to obtain baseline T2
values for healthy talar cartilage7. The mean age at MRI was
30.2 � 6.1 years, the body mass index (BMI) was 24.2 � 3.3 kg/m2,
two were female and six male.

Between 1997 and 2006 39 patients with symptomatic osteo-
chondral defects of the talus were treated with MFX or drilling at
the Department of Orthopaedics of the Medical University of
Vienna. Additionally, several different autologous chondrocyte
transplantation techniques (autologous chondrocyte trans-
plantation with a periosteal flap e ACT, matrix augmented autol-
ogous chondrocyte transplantation e MACT: Hyalograft C, CaRes)
were used between 1998 and 2009 for singular talar defects in 23
cases.

The inclusion criteria both for MFX and for MACT were symp-
tomatic deep chondral singular defects (Outerbridge Grade 3 or 4)
or singular osteochondral defects (Hepple 3 and 4) with stable
adjacent cartilage.

The exclusion criteria were: rheumatoid arthritis, progressed
osteoarthritis, kissing lesions, malalignment or instability of the
joint.
From this patient collective, we were able to recruit 18 patients
(20 cases of ankles after cartilage repair) that were comparable in
age, BMI, sex and defect size (10 MFX, 10 MACT).

The surgical procedures used in these cases have been described
in detail26,27. Briefly, MFX was carried out as recommended by
Steadman5, and all MACT cases included in this study were treated
with a hyaluronan matrix (Hyalograft C�, Fidia Advanced
Biopolymer, Abbano, Italy): after a biopsy in first-look arthroscopy
and subsequent in vitro expansion, the graft was implanted inmini-
arthrotomy28e31.

In the MFX cases, the mean age at surgery was 30.8 � 9.7 years,
the BMI was 25.9 � 4.3 kg/m2, five were female and four male, the
defect size was 1.16 � 0.49 cm2, and the follow-up period was
113.8 � 28.8 months.

In the MACTcases, the mean age at surgery was 25.4� 5.6 years,
the BMI was 27.1 � 4.3 kg/m2, six were female and three male, the
defect size was 1.39 � 0.33 cm2, and the follow-up period was
65.4 � 34.1 months.

The evaluation of clinical outcome was carried out with the
AOFAS score7. The AOFAS score is a numerical system which
emphasizes the patient’s perception of function and pain. The
maximum is 100 points (50 function, 40 pain, 10 alignment). We
considered 100e90 points excellent, 89e80 good, 79e60 fair and
below 59 poor17.

Therewere no significant differences between the two groups in
the t-test and chi-square test except the follow-up intervals due to
the fact that the treatment with cell-based techniques has become
the preferred treatment option at the department.

MRI technique

All examinations were carried out with a 7 T MR whole body
system (Magnetom, Siemens Healthcare, Erlangen, Germany) using
a 28-channel array-coil (Quality Electrodynamics LLC, Cleveland,
OH). Each case was measured in one session that consisted both of
morphological sequences and the T2 mapping sequence: for the
standard morphological assessment, we used a proton density (PD)
weighted two-dimensional turbo spin-echo (2D-TSE) sequence
with fat suppression (fs) in sagittal and coronal planes (Fig. 1). The
in-plane resolution in the sagittal and coronal orientationwas both
0.31 � 0.31 mm [448 � 448 matrix in a 140 mm � 140 mm field-
of-view (FOV)], with a slice thickness of 3 mm, repetition time /
echo time was 4,000/26 ms and 3,000/25 ms, respectively, and the
flip angles were 170� and 180�. One average was sufficient and the
bandwidth was 243 Hz/pixel. Fifteen slices were measured in each
orientation with a distance factor of 10%, resulting in total scan
times of 3 min 14 s in the sagittal orientation, and in 2 min 26 s in
the coronal orientation.

For the calculation of the T2 maps, we used a multi-echo spin-
echo sequence. The planning was based on the morphologic PD
images, and the slices were oriented in the sagittal plane so that the
slab covered the entire repair site. The FOV was 140 mm � 140 mm
and thematrix was 320� 320, resulting in an in-plane resolution of
0.4 � 0.4 mmwith a slice thickness of 3 mm and distance factor of
0%. TR was 3,830 ms, and six different echo times were measured:
11.9/23.8/35.7/47.6/59.5 and 71.4 ms. The bandwidth was 252 Hz/
pixel, one average was used and seven slices were acquired,
resulting in a scan time of 13 min 7 s. The T2 maps were then
calculated on the workstation with a pixel wise, mono-exponential
non-negative least squares (NNLS) fit analysis (MapIt, Siemens).

The followingmorphologic criteriawere systematically assessed
by the senior author (ST, 20 years of experience in musculo-skeletal
MR) in the morphological MR images: filling of the defect, cartilage
interface, surface of the RT, structure, adjacent bone marrow, signal
intensity, effusion (Table I).



Fig. 1. Proton weighted sagittal (a) and coronal (b) images and corresponding T2 map (c) of a case after MACT. The repair site is marked with white arrows. The superficial T2 values
of the repair tissue are comparable to those of the adjacent cartilage, whereas there is prolonged T2 in the deep layer.
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Region of interest (ROI) analysis

In consensus with the morphological images (Fig. 1), two
contiguous slices covering the cartilage RT, and two contiguous
slices of intact reference cartilage of the talus in the same orien-
tation to the static magnetic field were selected for the ROI analyses
by the senior author. The T2 ROI analyses were carried out inde-
pendently by two trained readers (SD and SA).

A deep and a superficial ROI were placed in each slice covering
half the thickness of the reference cartilage or of the RT layer,
respectively (Fig. 2). Subchondral bone and synovial fluid were
Table I
Morphological evaluation. Comparable results were after both surgical techniques.
The vast majority of the cases had alterations of the subchondral bone, whereas good
defect filling was found in most cases

MFX
(N ¼ 10)

MACT
(N ¼ 10)

1. Filling of the defect
Complete 7 9
Hypertrophy 1 1
Incomplete
>50% 2
<50%
0%

2. Cartilage interface lengths (filling parallel to cartilage surface)
Complete (integration with surrounding cartilage) 7 7
Incomplete (integration with surrounding cartilage) 1 3
Demarcation border visible (split like)
Defect visible
<50% of length of the RT 2
>50% of length of the RT

3. Surface of the RT
Surface intact 7 7
Surface damaged: fibrillations/fissures/ulcerations
<50% of RT depth 3 3
>50% of RT depth/total degeneration

4. Structure
Homogenous 7 6
Inhomogenous 3 4

5. Adjacent bone marrow
Normal 1 1
Edema, granulation tissue, cyst, sclerosis 9 9

6. Signal intensity
PD TSE
Isointense 9 6
Hyperintense 1 4
Hypointense

7. Effusion
No 4 4
Yes 6 6
carefully excluded. By definition, the minimum ROI size to be
considered acceptable was 30 pixels.

The ROIs from all slices in each individual casewere then used to
calculate the mean deep and superficial T2 of RT and reference
cartilage, respectively, as well as the mean global (average of deep
and superficial) T2 of the RT and reference cartilage in each
individual.

In the volunteers, we obtained 20 mean T2 values in a sample
size of 10 (40 ROIs in 10 cases, 10 mean deep and 10 mean super-
ficial T2 of the healthy control cartilage).

In the patient groups, we obtained 40 mean T2 values in
a sample size of 10 each (80 ROIs in 10 cases, 10 mean deep and 10
mean superficial T2 values each in the RT and in the reference
cartilage).

The relative T2 (rT2) was calculated from the global T2 values to
compare the surgical techniques (rT2 ¼ T2 of RT/T2 of reference
cartilage)32.

Finally, we calculated superficial T2 over deep T2 in order to
obtain a zonal T2 index for the distribution of T2 between deep and
superficial in healthy control cartilage, reference cartilage and RT.

Statistical analyses

Statistical analyses were carried out with SPSS 14.0 (SPSS
Institute, Chicago, IL, USA) and in Microsoft Excel on a Windows XP
platform (Microsoft, Redmont, WA, USA).

We used an unpaired, two-sided t-test to detect statistically
significant differences between the AOFAS score of the MFX and
MACT cases.

The quality of the T2 ROI readings was validated with the intra-
class co-efficient (ICC).

Normal distribution of the data (T2 values in ms) was assumed
and verified in ShapiroeWilk tests. We used paired, two-sided
Student’s t-tests to compare the deep and superficial T2 values
within the tissue types (healthy control cartilage, reference
cartilage and RT), and to test for differences between the layers of
the RT and the reference cartilage as well as between the global T2
of the reference cartilage and the RT within groups.

To compare of the deep and superficial T2 values among the
groups, we used unpaired two-sided Student’s t-tests.

We tested for differences in the zonal organization between the
cartilage of the healthy control of the volunteers and the reference
cartilage of the patients under consideration of the Bonferroni
correction. Finally, we tested for differences between the zonal
organization of the RT after MFX and MACT. The same tests were
used to compare the zonal indices of the tissue types and rT2.

P < 0.05 was considered significant (Bonferroni: P < 0.025), and
P < 0.001 was considered highly significant.



Fig. 2. Example of the ROI setting in a case after MACT in the repair site (a) and the reference (b). Both ROIs are set at the same orientation to the static magnetic field. The deep (1)
and superficial (2) ROIs are indicated by the white boxes. This case shows T2 values in the repair tissue that are comparable to the articular cartilage both in the deep and the
superficial layer.
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Results

The morphological outcome was comparable in both groups
(see Table I for details). The majority of cases had complete defect
filling and good integration of the RT, however, interestingly almost
all cases had alteration of the subchondral bone.

The mean AOFAS score at follow-up was 88.3 � 8.5 (excellent in
35.7%, good in 35.7%, fair in 14.3% and poor in 14.3%). There was no
significant difference between the MFX (91.3 � 6.2) and the MACT
cases (85.3 � 9.8, P ¼ 0.119, see Tables I and II).

The inter-observer evaluation analysis yielded an excellent
agreement for the T2 readings; the ICC was 0.932 for the deep and
0.914 for the superficial ROIs.

Please see the detailed results of the T2 analyses in Table II and
Fig. 3.
Table II
Statistical results of the T2 mapping analyses

Study-group Deep T2 Superfi

Volunteers (N ¼ 10) Healthy control 21.1 � 3.1
(18.9/23.4)

39.3 �
(35.1/4

P-valuey healthy
control
vs reference MFX

0.012 0.443

P-valuey healthy
control
vs reference MACT

0.018 0.928

MFX (N ¼ 10) Reference cartilage 25.3 � 3.5
(22.7/27.8)

37.4 �
(33.9/4

RT 36.3 � 7.7
(30.8/41.8)

43.4 �
(35.9/5

P-value* 0.004 0.159
MACT (N ¼ 10) Reference cartilage 27.1 � 6.6

(22.4/31.8)
39.0 �
(32.5/4

RT 38.6 � 7.3
(33.4/43.9)

44.6 �
(37.2/5

P-value* 0.001 0.155

MFX vs MACT P-valuey Reference cartilage 0.444 0.632
P-valuey RT 0.507 0.796
P-valuey rT2

� ¼ standard deviation; 95% confidence interval in parentheses (lower/upper limit), T2
* Paired, two-sided t-test.
y Unpaired, two-sided t-test.
In the volunteers, we observed a highly significant increase from
deep to superficial T2 (21.1 � 3.1 ms vs 39.3 � 5.9 ms, P < 0.001,
zonal T2 index ¼ 1.87).

The reference cartilage both of the MFX and of the MACT cases
yielded comparable ranges of T2 and a highly significant variation
of T2, however, we found small, yet significant differences between
the deep T2 layers of the healthy control and the MFX and MACT
cases (P¼ 0.012 for MFX and 0.018 for MACT). This did however not
lead to significant differences in global T2. Furthermore, no
significant differences were found between MFX and MACT
reference cartilage.

The analysis of the RT demonstrated there was a significant
variation in T2 after both techniques (MFX: P ¼ 0.009; MACT:
P¼ 0.003).With regard to the comparison of the RT to the reference
cartilage, it may be of particular interest to note that there were no
cial T2 P-value* Zonal T2 index Global T2 rT2

5.9
3.6)

<0.001 1.87 � 0.2
(1.7/2.0)

30.1 � 4.2
(27.1/33.1)

0.004 0.471

0.001 0.294

5.0
1.0)

<0.001 1.51 � 0.3
(1.3/1.7)

31.4 � 3.1
(29.1/33.6)

1.29 � 0.4
(1.0/1.5)

10.5
0.9)

0.009 1.20 � 0.2
(1.1/1.3)

39.8 � 8.6
(33.7/46.0)

0.011 0.025
9.1
5.5)

<0.001 1.45 � 0.2
(1.3/1.6)

33.1 � 7.5
(27.7/38.5)

1.29 � 0.3
(1.1/1.5)

10.4
2.0)

0.003 1.15 � 0.1
(1.1/1.2)

41.6 � 8.6
(35.4/47.8)

0.002 0.015

0.691 0.512
0.500 0.656

0.993

values in ms, N ¼ number of subjects.



Fig. 3. Boxplots of the T2 values after MFX and matrix associated autologous chondrocyte implantation (MACT) in cartilage RT and reference cartilage. Both treatment groups show
a significant increase of T2 in the superficial layer of the RT similar to the hyaline reference cartilage (blue and green boxes), however, T2 of the deep layers differs significantly
between RT and reference cartilage (blue boxes). In contrast, T2 of the superficial layers is comparable between RT and reference cartilage (green boxes). The P-values refer to
Student’s t-tests.
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significant differences between the superficial layers (MFX:
P ¼ 0.159; MACT: P ¼ 0.155). In contrast, both patient groups had
significantly (MFX: P¼ 0.004; MACT: P¼ 0.001) increased T2 in the
deep layers of RT when compared to the reference cartilage, which
led to a significant difference between global RT and global
reference cartilage T2 (MFX: P ¼ 0.025; MACT: P ¼ 0.015).

The direct comparison of the absolute RT T2 values yielded no
significant differences between MFX and MACT RT (deep T2:
P ¼ 0.507; superficial T2: P ¼ 0.796). As a consequence, rT2 was
almost identical for the MFX and MACT cases (P ¼ 0.993).

Discussion

This study reports on the first utilization of T2 mapping in the
ankle at 7 T in a clinical setting, and yields new knowledge
regarding the T2 properties of the articular cartilage and cartilage
RT after MFX and MACT.

We found that the zonal T2 variation of RT after both surgical
procedures differed significantly from that of adjacent articular
reference cartilage. T2 was comparable in the superficial layers,
however, in the deep layers we found increased T2 when compared
to the articular cartilage both of patients and healthy controls. The
T2 properties of MFX and of MACT RT did not differ significantly.

At this time, no randomized control trial has been published to
directly compare if MFX and MACT of the ankle lead to significantly
different clinical outcome. The current knowledge regarding the
surgical treatment of osteochondral lesions is based on case series
than mainly report short- and mid-term results and use clinical
scores as outcome measure; based on a systematic review, bone
marrow stimulation is considered the best treatment option4. The
analysis yielded a study weighted success rate of 85% (46e100%)
under consideration of 388 cases deriving from 18 studies. In
contrast, for classical ACT with a periosteal flap, a successful result
was found only in 76% (70e92%) in 59 cases from four studies. No
matrix associated ACT techniques were included in the review.

With regard to the overall success of MFX it should however be
noted that there are not sufficient study results available to esti-
mate the long-term efficiency of the technique; Ferkel et al.33 report
a deterioration of clinical outcomes at 71 months, and Hunt and
Sherman found 54% of the cases had fair or poor results at 66
months34. Also, first second-look arthroscopy findings indicate that
despite good and excellent clinical outcome, visible cracks and
fissuring of the RT are present 1 year after treatment35.

As a consequence, there remains a need to improve cartilage repair
in the ankle. The major advantage of matrix associated ACT (MACT) in
theankle is thatmalleotomy isoftennotnecessary,whichconsiderably
decreases themorbidity of the procedure18.With regard to the clinical
outcome the first short- andmid-term results are comparable to those
reported after ACT, albeit of limited level of evidence; Giannini et al.18

report good and excellent outcome in more than 80% at 36 months
in a series of 46 cases treated with Hyalograft C. Nehrer et al.27 report
stable clinical outcome in 13 cases after MACT with Hyalograft C after
1e6 years (76.9% good-to-excellent).

The histological evidence on the RTcomposition after Hyalograft
C in the ankle is currently limited to three cases; hyaline-like
quality was reported in all cases and the international cartilage
repair society repair categories were rated normal, nearly normal
and nearly normal, respectively18. A series of 10 cases that were
evaluated with delayed Gadolinium Enhanced MRI of Cartilage
(dGEMRIC) at 3.0 T yielded relatively high glycosaminoglycan
(GAG) content, still, we do not know at this time if the RT quality is
actually better than after MFX36.

It is therefore of substantial interest to optimize quantitative MR
mapping protocols for the assessment of cartilage RT quality in the
ankle. Among other techniques such as dGEMRIC and diffusion
weighted imaging36,37, T2 mapping remains the most promising
approach to integrate biochemical cartilage imaging into a clinical
setting.

Both in cartilage and RT, there are two major mechanisms that
influence T2: free water increases T2 independently from the
orientation to the static magnetic field, and additionally there is an
orientation dependent relaxation component of macromolecule-
associated water38,39. The collagen fibers running anisotropically
perpendicular to the cortical bone in the deep zone of normal
hyaline cartilage reduce the mobility of water protons and thus
reduce T2 relaxation time values in the deep zone of hyaline
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cartilage, which is not present in the superficial zone of cartilage
where the collagen fibers are randomly oriented. This different
orientation of the collagen fiber network explains the increase of T2
values from the deep to superficial cartilage zone in normal hyaline
cartilage and is a marker for collagen fiber network organization.
Another factor is the dipolar coupling of collagen associated water
is minimum at 54.7� to the static magnetic field, which leads to
increased T2 (magic angle effect)13,32,40.

In the knee joint, the T2 and dGEMRIC properties of the RT after
MACT were closer to those of native cartilage than after
MFX32,41e46, albeit not comparable. The global T2 of the RT after
MFX was lower than after MACT and lower than the reference
cartilage, indicating lower water content. Also, there was a lack of
zonal organization after MFX, whereas MACT RT yielded a similar
variation of T2 across the layers like native cartilage37.

In the ankle, the first results of T2 mapping at 3 T yielded
differing results: rT2 was 1.00 � 0.20 (0.72e1.36) in a series of 14
cases after MFX and 0.85 � 0.21 (0.49e1.26) in a series of eight
cases after Hyalograft C, and in another series of 12 cases after
MACT rT2 was 1.05 (50.1 � 8.0 ms in the RT and 47.6 � 9.3 ms in
the reference cartilage)26,27. Based on these results, the water and
collagen content was similar to the reference cartilage after both
treatment modalities. It should however be noted that a zonal
analysis was not feasible at 3 T, mainly due to the lower SNR.

The aimof this studywas to attain additional data on the collagen
fibril arrangement in the RT after either technique. With regard to
the use of the T2mapping protocol in a clinical setting, the potential
of the 7 T system could be used to achieve excellent SNR and reso-
lution within a reasonable scan time. T2 mapping is generally
considered a reliablemodality, as it is fast, reproducible anddoes not
require the use of contrast agent47. A possible source of bias is the
magic angle effect, which may cause higher T2 of the cartilage
because of the orientation to the static magnetic field depending on
the anatomical properties of the joint48; regarding the ankle, T2may
be influenced in the coronal plane, as the cartilage of the talar
shoulder will be oriented around 55� to the static magnetic field. In
contrast, this should notoccur in the sagittal plane as the orientation
of the talar cartilage will be more perpendicular. This was the main
reason to perform the T2mapping protocol in the sagittal plane and
to choose the ROI for the reference cartilage in the same orientation
as the repair site in parallel slices (see Fig. 2).

We are aware of the limited level of evidence that is associated
with the study design and also note that the differing follow-up
intervals are a possible source of bias to our results; still, we find
it worth to report that both surgical techniques resulted in RT with
a comparable degree of organization in T2 mapping.

T2 of the deep layer was higher than in the reference cartilage in
bothgroups, indicatingahigher ratioof freewater. Thismayresultboth
from a lower concentration in collagen and from lower GAG content.
Still, there was a significant increase of T2 towards the surface in MFX
RT, which has not been found in the knee or in animal models; the
organization of the RT fibrilswas not adequate to hyaline cartilage, but
within the range that has been found for MACT RT in the knee25,41. It
should be noted that the MFX cases were mid- and long-term results,
and that thesecases shouldbeparticularlyprone todegeneration;even
more, the clinical outcomewasgood-to-excellent inall cases. Thezonal
variation of the reference cartilage of the patients was comparable to
the healthy control cartilage, albeit there was a small but significant
difference in the deep layer (21.1ms vs 25.3ms inMFX, and 27.1ms in
MACT; see Fig. 3 and Table II). We believe this indicates there remains
a detectable alteration of the adjacent cartilage after surgery, however,
the current data do not allow to conclude if this is clinically relevant.

With regard to the global T2 values, there was a considerable
range of T2 within each treatment group. This agrees well with
findings at 3 T both in the ankle and in the knee25e27,32,45, and
confirms there is a wide variation of RT quality within treatment
groups, as has been described in histological analyses14,16. Still,
these first results further substantiate the notion that other than in
the knee, MFX results in organized RT and may be particularly
suited for the treatment of cartilage defects of the
ankle4,10,21,25,26,36. Further studies with T2 mapping will however
be needed to enable clinical investigators to draw conclusions for
the treatment algorithms in clinical routine.

In summary, T2 mapping at 7 T allows for the quantitative
assessment of the collagen network organization of the talus both
in native cartilage and in cartilage RT. In contrast to the knee, both
MACT and MFX result in RT with a similar degree of T2 variation,
however different from that of native hyaline cartilage.
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