13 research outputs found

    The safety and effectiveness of chenodeoxycholic acid treatment in patients withcerebrotendinous xanthomatosis:two retrospective cohort studies.

    Get PDF
    Objective: To evaluate the safety and effectiveness of chenodeoxycholic acid (CDCA) treatment in patients with cerebrotendinous xanthomatosis (CTX). Methods: Two retrospective cohort studies were conducted in CTX patients who underwent CDCA treatment: one in the Netherlands (NL; CDCA-STUK-15-001) and one in Italy (IT; CDCA-STRCH-CR-14-001). Eligible patients were aged 2–75 years, had been diagnosed with CTX, and were treated with CDCA orally for ≥1 year. The impact of CDCA treatment on biochemical markers (including serum cholestanol levels) and disease signs and symptoms were assessed, in addition to the safety and tolerability of CDCA treatment. Results: A total of 35 patients were screened in the NL study and were diagnosed with CTX at 25.6 (± 13.7 SD) years on average. These patients were treated with CDCA and followed up for a median of 9.00 (range: 0.4–26.3) years. In addition, 28 patients were enrolled in the IT study and were diagnosed at 35.0 (± 11.4 SD) years on average (median duration of CDCA treatment: 5.75 [range: 0.0–25.0] years). Signs and symptoms of disease resolved, improved, or remained stable in many patients, with concomitant improvements in biochemical marker levels (serum cholestanol, p < 0.001; 7α-hydroxy-4-cholesten-3-one, p < 0.001 [IT study]). Conclusions: The outcomes of these retrospective cohort studies indicate that CDCA is effective in the long-term treatment of CTX, with an acceptable safety profile. © 2019, The Author(s)

    Listeria monocytogenes in Milk Products

    Get PDF
    peer-reviewedMilk and milk products are frequently identified as vectors for transmission of Listeria monocytogenes. Milk can be contaminated at farm level either by indirect external contamination from the farm environment or less frequently by direct contamination of the milk from infection in the animal. Pasteurisation of milk will kill L. monocytogenes, but post-pasteurisation contamination, consumption of unpasteurised milk and manufacture of unpasteurised milk products can lead to milk being the cause of outbreaks of listeriosis. Therefore, there is a concern that L. monocytogenes in milk could lead to a public health risk. To protect against this risk, there is a need for awareness surrounding the issues, hygienic practices to reduce the risk and adequate sampling and analysis to verify that the risk is controlled. This review will highlight the issues surrounding L. monocytogenes in milk and milk products, including possible control measures. It will therefore create awareness about L. monocytogenes, contributing to protection of public health

    A compositional tipping point governing the mobilization and eruption style of rhyolitic magma

    No full text
    International audienceThe most viscous volcanic melts and the largest explosive eruptions on our planet consist of calcalkaline rhyolites. These eruptions have the potential to influence global climate. The eruptive products are commonly very crystal-poor and highly degassed, yet the magma is mostly stored as crystal mushes containing small amounts of interstitial melt with elevated water content. It is unclear how magma mushes are mobilized to create large batches of eruptible crystal-free magma. Further, rhyolitic eruptions can switch repeatedly between effusive and explosive eruption styles and this transition is difficult to attribute to the rheological effects of water content or crystallinity. Here we measure the viscosity of a series of melts spanning the compositional range of the Yellowstone volcanic system and find that in a narrow compositional zone, melt viscosity increases by up to two orders of magnitude. These viscosity variations are not predicted by current viscosity models and result from melt structure reorganization, as confirmed by Raman spectroscopy. We identify a critical compositional tipping point, independently documented in the global geochemical record of rhyolites, at which rhyolitic melts fluidize or stiffen and that clearly separates effusive from explosive deposits worldwide. This correlation between melt structure, viscosity and eruptive behaviour holds despite the variable water content and other parameters, such as temperature, that are inherent in natural eruptions. Thermodynamic modelling demonstrates how the observed subtle compositional changes that result in fluidization or stiffening of the melt can be induced by crystal growth from the melt or variation in oxygen fugacity. However, the rheological effects of water and crystal content alone cannot explain the correlation between composition and eruptive style. We conclude that the composition of calcalkaline rhyolites is decisive in determining the mobilization and eruption dynamics of Earth’s largest volcanic systems, resulting in a better understanding of how the melt structure controls volcanic processes

    Outbreaks of listeriosis associated with deli meats and cheese: an overview

    No full text
    corecore