3 research outputs found

    Origins of the Greenland shark (Somniosus microcephalus): Impacts of ice-olation and introgression

    Get PDF
    Herein, we use genetic data from 277 sleeper sharks to perform coalescent-based modeling to test the hypothesis of early Quaternary emergence of the Greenland shark (Somniosus microcephalus) from ancestral sleeper sharks in the Canadian Arctic-Subarctic region. Our results show that morphologically cryptic somniosids S. microcephalus and Somniosus pacificus can be genetically distinguished using combined mitochondrial and nuclear DNA markers. Our data confirm the presence of genetically admixed individuals in the Canadian Arctic and sub-Arctic, and temperate Eastern Atlantic regions, suggesting introgressive hybridization upon secondary contact following the initial species divergence. Conservative substitution rates fitted to an Isolation with Migration (IM) model indicate a likely species divergence time of 2.34 Ma, using the mitochondrial sequence DNA, which in conjunction with the geographic distribution of admixtures and Pacific signatures likely indicates speciation associated with processes other than the closing of the Isthmus of Panama. This time span coincides with further planetary cooling in the early Quaternary period followed by the onset of oscillating glacial-interglacial cycles. We propose that the initial S. microcephalus–S. pacificus split, and subsequent hybridization events, were likely associated with the onset of Pleistocene glacial oscillations, whereby fluctuating sea levels constrained connectivity among Arctic oceanic basins, Arctic marginal seas, and the North Atlantic Ocean. Our data demonstrates support for the evolutionary consequences of oscillatory vicariance via transient oceanic isolation with subsequent secondary contact associated with fluctuating sea levels throughout the Quaternary period—which may serve as a model for the origins of Arctic marine fauna on a broad taxonomic scale

    Borneo and Indochina are major evolutionary hotspots for Southeast Asian biodiversity

    Get PDF
    Tropical Southeast Asia harbors extraordinary species richness and in its entirety comprises four of the Earth\u27s 34 biodiversity hotspots. Here, we examine the assembly of the Southeast Asian biota through time and space. We conduct meta-analyses of geological, climatic and biological (including 61 phylogenetic) datasets to test which areas have been the sources of long-term biological diversity in SE Asia, particularly in the pre-Miocene, Miocene and Plio-Pleistocene, and whether the respective biota have been dominated by in situ diversification, immigration and/or emigration, or equilibrium dynamics. We identify Borneo and Indochina, in particular, as major \u27evolutionary hotspots\u27 for a diverse range of fauna and flora. While most of the region\u27s biodiversity is a result of both the accumulation of immigrants and in situ diversification, within-area diversification and subsequent emigration have been the predominant signals characterizing Indochina and Borneo\u27s biota since at least the early Miocene. In contrast, colonization events are comparatively rare from younger volcanically active emergent islands such as Java, which show increased levels of immigration events. Few dispersal events were observed across the major biogeographic barrier of Wallace\u27s Line. Accelerated efforts to conserve Borneo\u27s flora and fauna in particular, currently housing the highest levels of Southeast Asian plant and mammal species richness, are critically required

    The late quaternary tectonic, biogeochemical, and environmental evolution of ferruginous Lake Towuti, Indonesia

    No full text
    There is a paucity of long and continuous continental records from South East Asia suitable to inform on past changes and underlying causes of the region's climate and associated diverse ecosystem evolution during the late Quaternary. In 2015, the Towuti Drilling Project (TDP) collected a series of sedimentary drill cores from the tectonic, ferruginous, and highly biodiverse Lake Towuti, Sulawesi, one of Indonesia's oldest lakes. The drill cores contain similar to 1 Myr of uninterrupted lacustrine sedimentation to document long-term environmental and climatic change in the tropical western Pacific, the impacts of geological and environmental changes on the biological evolution of aquatic taxa, and the geomicrobiology and biogeochemistry of metal-rich, ultramafichosted lake sediment. Here we use lithostratigraphic, mineralogical, geochemical, and geochronological datasets to elucidate Lake Towuti's tectonic emergence and its biogeochemical responses to climatic and volcanic forcings since lake formation. Our data document that Lake Towuti emerged during a phase of accelerated tectonic subsidence from a landscape characterized by active river channels, shallow lakes and swamps into a permanent lake at -1 Ma. The lacustrine sediments feature quasi-rhythmic alternations of green organic rich and red sideritic clay beds reflecting changes in lake mixing and biogeochemistry as a response to temperature and hydrological changes driven by orbital-scale changes in insolation and continental ice volume through the midto late Pleistocene. Clay deposition is interrupted by two beds of diatomaceous oozes composed primarily of planktonic diatoms that reflect phases of substantially increased primary productivity. The occurrence of these diatomaceous oozes in close association with multiple tephra beds suggests atrophic state change driven by the addition of volcanically sourced P, possibly in combination with a lake mixing state that supports recycling of P. Data on lake age and ontogeny are also in agreement with molecular-clock estimates of similar to 0.7 Ma (0.18-1.37 Ma) for the divergence of Lake Towuti's Telmatherinid fishes from a riverine ancestor. Our data therefore are compatible with an evolutionary model in which Lake Towuti's endemic fauna is a result of geographic speciation in the Malili Lakes, a set of large lakes in Southeast Sulawesi, driven by physical or chemical dispersal limits imposed by the regional rivers and lakes. More detailed chronological constraints and refined climate and environmental proxy datasets are currently in preparation and will help to paint a more detailed history of the region's climate and environmental history in future studies
    corecore