3,741 research outputs found
On the origin of the Tully-Fisher relation
We discuss the origin of the Tully-Fisher (TF) relation using the
-body/SPH method, which includes cooling, star formation and stellar
feedback of energy, mass and metals. We consider initially rotating overdense
spheres, and trace formation processes of disk galaxies from to in
the Cold Dark Matter (CDM) cosmology. To clarify the origin of the TF relation,
we simulate formation of 14 galaxies with different masses and spin parameters,
and compute observable values, such as the total magnitude and the line-width.
We find that the simulated galaxies reproduce the slope and scatter of the TF
relation: the slope is originated in the difference of total galactic masses,
and the scatter is produced by the difference of initial spin parameters. As
well as the TF relation, observed features of spiral galaxies, such as the
exponential light-profile and the flat rotation curve, are reproduced in our
simulations, which were assumed {\it a priori} in past semi-analytical
approaches.Comment: 11 pages, including 6 figures, submitted to Ap
A Unified Scaling Law in Spiral Galaxies
We investigate the origin of a unified scaling relation in spiral galaxies.
Observed spiral galaxies are spread on a plane in the
three-dimensionallogarithmic space of luminosity L, radius R and rotation
velocity V. The plane is expressed as in I-passband,
where is a constant. On the plane, observed galaxies are distributed
in an elongated region which looks like the shape of a surfboard. The
well-known scaling relations, L-V (Tully-Fisher relation), V-R (also the
Tully-Fisher relation) and R-L (Freeman's law), can be understood as oblique
projections of the surfboard-like plane into 2-D spaces. This unified
interpretation of the known scaling relations should be a clue to understand
the physical origin of all the relations consistently. Furthermore, this
interpretation can also explain why previous studies could not find any
correlation between TF residuals and radius.
In order to clarify the origin of this plane, we simulate formation and
evolution of spiral galaxies with the N-body/SPH method, including cooling,
star formation and stellar feedback. Initial conditions are set to isolated 14
spheres with two free parameters, such as mass and angular momentum. The CDM
(h=0.5, ) cosmology is considered as a test case. The simulations
provide the following two conclusions: (a) The slope of the plane is well
reproduced but the zero-point is not. This zero-point discrepancy could be
solved in a low density ($\Omega_00.5) cosmology.
(b) The surfboard-shaped plane can be explained by the control of galactic mass
and angular momentum.Comment: Accepted for publication in ApJ Letters. 6 pages including 2 figure
AstroGrid-D: Enhancing Astronomic Science with Grid Technology
We present AstroGrid-D, a project bringing together astronomers and experts in Grid technology to enhance astronomic science in many aspects. First, by sharing currently dispersed resources, scientists can calculate their models in more detail. Second, by developing new mechanisms to efficiently access and process existing datasets, scientific problems can be investigated that were until now impossible to solve. Third, by adopting Grid technology large instruments such as robotic telescopes and complex scientific workflows from data aquisition to analysis can be managed in an integrated manner. In this paper, we present prominent astronomic use cases, discuss requirements on a Grid middleware and present our approach to extend/augment existing middleware to facilitate the improvements mentioned above
Application of modified profile analysis to function testing of the motion/no-motion issue in an aircraft ground-handling simulation
A recent modification of the methodology of profile analysis, which allows the testing for differences between two functions as a whole with a single test, rather than point by point with multiple tests is discussed. The modification is applied to the examination of the issue of motion/no motion conditions as shown by the lateral deviation curve as a function of engine cut speed of a piloted 737-100 simulator. The results of this application are presented along with those of more conventional statistical test procedures on the same simulator data
A Laser Frequency Comb System for Absolute Calibration of the VTT Echelle Spectrograph
A wavelength calibration system based on a laser frequency comb (LFC) was
developed in a co-operation between the Kiepenheuer-Institut f\"ur
Sonnenphysik, Freiburg, Germany and the Max-Planck-Institut f\"ur Quantenoptik,
Garching, Germany for permanent installation at the German Vacuum Tower
Telescope (VTT) on Tenerife, Canary Islands. The system was installed
successfully in October 2011. By simultaneously recording the spectra from the
Sun and the LFC, for each exposure a calibration curve can be derived from the
known frequencies of the comb modes that is suitable for absolute calibration
at the meters per second level. We briefly summarize some topics in solar
physics that benefit from absolute spectroscopy and point out the advantages of
LFC compared to traditional calibration techniques. We also sketch the basic
setup of the VTT calibration system and its integration with the existing
echelle spectrograph.Comment: 9 pages, 2 figures; Solar Physics 277 (2012
Absolute velocity measurements in sunspot umbrae
In sunspot umbrae, convection is largely suppressed by the strong magnetic
field. Previous measurements reported on negligible convective flows in umbral
cores. Based on this, numerous studies have taken the umbra as zero reference
to calculate Doppler velocities of the ambient active region. To clarify the
amount of convective motion in the darkest part of umbrae, we directly measured
Doppler velocities with an unprecedented accuracy and precision. We performed
spectroscopic observations of sunspot umbrae with the Laser Absolute Reference
Spectrograph (LARS) at the German Vacuum Tower Telescope. A laser frequency
comb enabled the calibration of the high-resolution spectrograph and absolute
wavelength positions. A thorough spectral calibration, including the
measurement of the reference wavelength, yielded Doppler shifts of the spectral
line Ti i 5713.9 {\AA} with an uncertainty of around 5 m s-1. The measured
Doppler shifts are a composition of umbral convection and magneto-acoustic
waves. For the analysis of convective shifts, we temporally average each
sequence to reduce the superimposed wave signal. Compared to convective
blueshifts of up to -350 m s-1 in the quiet Sun, sunspot umbrae yield a
strongly reduced convective blueshifts around -30 m s-1. {W}e find that the
velocity in a sunspot umbra correlates significantly with the magnetic field
strength, but also with the umbral temperature defining the depth of the
titanium line. The vertical upward motion decreases with increasing field
strength. Extrapolating the linear approximation to zero magnetic field
reproduces the measured quiet Sun blueshift. Simply taking the sunspot umbra as
a zero velocity reference for the calculation of photospheric Dopplergrams can
imply a systematic velocity error.Comment: 10 pages, 7 figures, 2 tables, Appendix with 5 figure
The Effects of a Photoionizing UV Background on the Formation of Disk Galaxies
We use high resolution N-body/gasdynamical simulations to investigate the
effects of a photoionizing UV background on the assembly of disk galaxies in
hierarchically clustering universes. We focus on the mass and rotational
properties of gas that can cool to form centrifugally supported disks in dark
matter halos of different mass. Photoheating can significantly reduce the
amount of gas that can cool in galactic halos. Depending on the strength of the
UV background field, the amount of cooled gas can be reduced by up to in
systems with circular speeds in the range - \kms. The magnitude of the
effect, however, is not enough to solve the ``overcooling'' problem that
plagues hierarchical models of galaxy formation if the UV background is chosen
to be consistent with estimates based on recent observations of QSO absorption
systems. Photoionization has little effect on the collapse of gas at high
redshift and affects preferentially gas that is accreted at late times. Since
disks form inside-out, accreting higher angular momentum gas at later times,
disks formed in the presence of a UV background have spins that are even
smaller than those formed in simulations that do not include the effects of
photoionization. This exacerbates the angular momentum problem that afflicts
hierarchical models of disk formation. We conclude that photoionization cannot
provide the heating mechanism required to reconcile hierarchically clustering
models with observations. Energy feedback and enrichment processes from the
formation and evolution of stars must therefore be indispensable ingredients
for any successful model of the formation of disk galaxies.Comment: 36 pages, w/ embedded figures, submitted to ApJ. Also available at
http://penedes.as.arizona.edu/~jfn/preprints/dskform.ps.g
Laser frequency combs for astronomical observations
A direct measurement of the universe's expansion history could be made by
observing in real time the evolution of the cosmological redshift of distant
objects. However, this would require measurements of Doppler velocity drifts of
about 1 centimeter per second per year, and astronomical spectrographs have not
yet been calibrated to this tolerance. We demonstrate the first use of a laser
frequency comb for wavelength calibration of an astronomical telescope. Even
with a simple analysis, absolute calibration is achieved with an equivalent
Doppler precision of approximately 9 meters per second at about 1.5 micrometers
- beyond state-of-the-art accuracy. We show that tracking complex, time-varying
systematic effects in the spectrograph and detector system is a particular
advantage of laser frequency comb calibration. This technique promises an
effective means for modeling and removal of such systematic effects to the
accuracy required by future experiments to see direct evidence of the
universe's putative acceleration.Comment: Science, 5th September 2008. 18 pages, 7 figures (7 JPG files),
including Supporting Online Material. Version with higher resolution figures
available at http://astronomy.swin.edu.au/~mmurphy/pub.htm
A bipolar structure and shocks surrounding the stellar-merger remnant V1309 Scorpii
Context. V1309 Sco is an example of a red nova, a product of the merger
between non-compact stars. V1309 Sco is particularly important within the class
of red novae due to the abundance of the progenitor binary before the merger.
Aims. We aim to investigate the spatio-kinematic and chemical properties of
the circumstellar environment, including deriving the physical conditions and
establishing the origins of the different circumstellar components.
Methods. We use radiative transfer modelling of molecular emission in sub-mm
spectra to examine the properties of the molecular gas, and use forbidden line
diagnostics from optical spectra to constrain electron density and temperature
using forbidden line diagnostics. We compare line intensities from shock models
to observations to look for and constrain shocks.
Results. We derive a new kinematical distance of 5.6 kpc to the source. The
detection of ro-vibrational H2 and sub-mm HCO+ emission in 2016 and 2019,
respectively, indicate active shock interactions within the circumstellar
environment. The velocity profiles of both H2 and HCO+, as well as the moment-1
maps of sub-mm CO and 29-SiO, indicate a bipolar structure that may be
asymmetric. The sub-mm and optical molecular emission exhibits temperatures of
35-113 and 200 K, respectively, whilst the atomic gas is much hotter, with
temperatures of 5-15 kK, which may be due to shock heating.
Conclusions. The detection of a bipolar structure in V1309 Sco indicates
further similarities with the structure of another Galactic red nova, V4332
Sgr. It provides evidence that bipolar structures may be common in red novae.
All collected data are consistent with V1309 Sco being a kinematically and
chemically complex system.Comment: 22 pages, 16 figures. Submitted to Astronomy & Astrophysic
- âŠ