3,741 research outputs found

    On the origin of the Tully-Fisher relation

    Get PDF
    We discuss the origin of the Tully-Fisher (TF) relation using the NN-body/SPH method, which includes cooling, star formation and stellar feedback of energy, mass and metals. We consider initially rotating overdense spheres, and trace formation processes of disk galaxies from z=25z=25 to z=0z=0 in the Cold Dark Matter (CDM) cosmology. To clarify the origin of the TF relation, we simulate formation of 14 galaxies with different masses and spin parameters, and compute observable values, such as the total magnitude and the line-width. We find that the simulated galaxies reproduce the slope and scatter of the TF relation: the slope is originated in the difference of total galactic masses, and the scatter is produced by the difference of initial spin parameters. As well as the TF relation, observed features of spiral galaxies, such as the exponential light-profile and the flat rotation curve, are reproduced in our simulations, which were assumed {\it a priori} in past semi-analytical approaches.Comment: 11 pages, including 6 figures, submitted to Ap

    A Unified Scaling Law in Spiral Galaxies

    Get PDF
    We investigate the origin of a unified scaling relation in spiral galaxies. Observed spiral galaxies are spread on a plane in the three-dimensionallogarithmic space of luminosity L, radius R and rotation velocity V. The plane is expressed as L∝(VR)αL \propto (V R)^{\alpha} in I-passband, where α\alpha is a constant. On the plane, observed galaxies are distributed in an elongated region which looks like the shape of a surfboard. The well-known scaling relations, L-V (Tully-Fisher relation), V-R (also the Tully-Fisher relation) and R-L (Freeman's law), can be understood as oblique projections of the surfboard-like plane into 2-D spaces. This unified interpretation of the known scaling relations should be a clue to understand the physical origin of all the relations consistently. Furthermore, this interpretation can also explain why previous studies could not find any correlation between TF residuals and radius. In order to clarify the origin of this plane, we simulate formation and evolution of spiral galaxies with the N-body/SPH method, including cooling, star formation and stellar feedback. Initial conditions are set to isolated 14 spheres with two free parameters, such as mass and angular momentum. The CDM (h=0.5, Ω0=1\Omega_0=1) cosmology is considered as a test case. The simulations provide the following two conclusions: (a) The slope of the plane is well reproduced but the zero-point is not. This zero-point discrepancy could be solved in a low density ($\Omega_00.5) cosmology. (b) The surfboard-shaped plane can be explained by the control of galactic mass and angular momentum.Comment: Accepted for publication in ApJ Letters. 6 pages including 2 figure

    AstroGrid-D: Enhancing Astronomic Science with Grid Technology

    Get PDF
    We present AstroGrid-D, a project bringing together astronomers and experts in Grid technology to enhance astronomic science in many aspects. First, by sharing currently dispersed resources, scientists can calculate their models in more detail. Second, by developing new mechanisms to efficiently access and process existing datasets, scientific problems can be investigated that were until now impossible to solve. Third, by adopting Grid technology large instruments such as robotic telescopes and complex scientific workflows from data aquisition to analysis can be managed in an integrated manner. In this paper, we present prominent astronomic use cases, discuss requirements on a Grid middleware and present our approach to extend/augment existing middleware to facilitate the improvements mentioned above

    Application of modified profile analysis to function testing of the motion/no-motion issue in an aircraft ground-handling simulation

    Get PDF
    A recent modification of the methodology of profile analysis, which allows the testing for differences between two functions as a whole with a single test, rather than point by point with multiple tests is discussed. The modification is applied to the examination of the issue of motion/no motion conditions as shown by the lateral deviation curve as a function of engine cut speed of a piloted 737-100 simulator. The results of this application are presented along with those of more conventional statistical test procedures on the same simulator data

    A Laser Frequency Comb System for Absolute Calibration of the VTT Echelle Spectrograph

    Full text link
    A wavelength calibration system based on a laser frequency comb (LFC) was developed in a co-operation between the Kiepenheuer-Institut f\"ur Sonnenphysik, Freiburg, Germany and the Max-Planck-Institut f\"ur Quantenoptik, Garching, Germany for permanent installation at the German Vacuum Tower Telescope (VTT) on Tenerife, Canary Islands. The system was installed successfully in October 2011. By simultaneously recording the spectra from the Sun and the LFC, for each exposure a calibration curve can be derived from the known frequencies of the comb modes that is suitable for absolute calibration at the meters per second level. We briefly summarize some topics in solar physics that benefit from absolute spectroscopy and point out the advantages of LFC compared to traditional calibration techniques. We also sketch the basic setup of the VTT calibration system and its integration with the existing echelle spectrograph.Comment: 9 pages, 2 figures; Solar Physics 277 (2012

    Absolute velocity measurements in sunspot umbrae

    Full text link
    In sunspot umbrae, convection is largely suppressed by the strong magnetic field. Previous measurements reported on negligible convective flows in umbral cores. Based on this, numerous studies have taken the umbra as zero reference to calculate Doppler velocities of the ambient active region. To clarify the amount of convective motion in the darkest part of umbrae, we directly measured Doppler velocities with an unprecedented accuracy and precision. We performed spectroscopic observations of sunspot umbrae with the Laser Absolute Reference Spectrograph (LARS) at the German Vacuum Tower Telescope. A laser frequency comb enabled the calibration of the high-resolution spectrograph and absolute wavelength positions. A thorough spectral calibration, including the measurement of the reference wavelength, yielded Doppler shifts of the spectral line Ti i 5713.9 {\AA} with an uncertainty of around 5 m s-1. The measured Doppler shifts are a composition of umbral convection and magneto-acoustic waves. For the analysis of convective shifts, we temporally average each sequence to reduce the superimposed wave signal. Compared to convective blueshifts of up to -350 m s-1 in the quiet Sun, sunspot umbrae yield a strongly reduced convective blueshifts around -30 m s-1. {W}e find that the velocity in a sunspot umbra correlates significantly with the magnetic field strength, but also with the umbral temperature defining the depth of the titanium line. The vertical upward motion decreases with increasing field strength. Extrapolating the linear approximation to zero magnetic field reproduces the measured quiet Sun blueshift. Simply taking the sunspot umbra as a zero velocity reference for the calculation of photospheric Dopplergrams can imply a systematic velocity error.Comment: 10 pages, 7 figures, 2 tables, Appendix with 5 figure

    The Effects of a Photoionizing UV Background on the Formation of Disk Galaxies

    Full text link
    We use high resolution N-body/gasdynamical simulations to investigate the effects of a photoionizing UV background on the assembly of disk galaxies in hierarchically clustering universes. We focus on the mass and rotational properties of gas that can cool to form centrifugally supported disks in dark matter halos of different mass. Photoheating can significantly reduce the amount of gas that can cool in galactic halos. Depending on the strength of the UV background field, the amount of cooled gas can be reduced by up to 50%50\% in systems with circular speeds in the range 8080-200200 \kms. The magnitude of the effect, however, is not enough to solve the ``overcooling'' problem that plagues hierarchical models of galaxy formation if the UV background is chosen to be consistent with estimates based on recent observations of QSO absorption systems. Photoionization has little effect on the collapse of gas at high redshift and affects preferentially gas that is accreted at late times. Since disks form inside-out, accreting higher angular momentum gas at later times, disks formed in the presence of a UV background have spins that are even smaller than those formed in simulations that do not include the effects of photoionization. This exacerbates the angular momentum problem that afflicts hierarchical models of disk formation. We conclude that photoionization cannot provide the heating mechanism required to reconcile hierarchically clustering models with observations. Energy feedback and enrichment processes from the formation and evolution of stars must therefore be indispensable ingredients for any successful model of the formation of disk galaxies.Comment: 36 pages, w/ embedded figures, submitted to ApJ. Also available at http://penedes.as.arizona.edu/~jfn/preprints/dskform.ps.g

    Laser frequency combs for astronomical observations

    Full text link
    A direct measurement of the universe's expansion history could be made by observing in real time the evolution of the cosmological redshift of distant objects. However, this would require measurements of Doppler velocity drifts of about 1 centimeter per second per year, and astronomical spectrographs have not yet been calibrated to this tolerance. We demonstrate the first use of a laser frequency comb for wavelength calibration of an astronomical telescope. Even with a simple analysis, absolute calibration is achieved with an equivalent Doppler precision of approximately 9 meters per second at about 1.5 micrometers - beyond state-of-the-art accuracy. We show that tracking complex, time-varying systematic effects in the spectrograph and detector system is a particular advantage of laser frequency comb calibration. This technique promises an effective means for modeling and removal of such systematic effects to the accuracy required by future experiments to see direct evidence of the universe's putative acceleration.Comment: Science, 5th September 2008. 18 pages, 7 figures (7 JPG files), including Supporting Online Material. Version with higher resolution figures available at http://astronomy.swin.edu.au/~mmurphy/pub.htm

    A bipolar structure and shocks surrounding the stellar-merger remnant V1309 Scorpii

    Full text link
    Context. V1309 Sco is an example of a red nova, a product of the merger between non-compact stars. V1309 Sco is particularly important within the class of red novae due to the abundance of the progenitor binary before the merger. Aims. We aim to investigate the spatio-kinematic and chemical properties of the circumstellar environment, including deriving the physical conditions and establishing the origins of the different circumstellar components. Methods. We use radiative transfer modelling of molecular emission in sub-mm spectra to examine the properties of the molecular gas, and use forbidden line diagnostics from optical spectra to constrain electron density and temperature using forbidden line diagnostics. We compare line intensities from shock models to observations to look for and constrain shocks. Results. We derive a new kinematical distance of 5.6 kpc to the source. The detection of ro-vibrational H2 and sub-mm HCO+ emission in 2016 and 2019, respectively, indicate active shock interactions within the circumstellar environment. The velocity profiles of both H2 and HCO+, as well as the moment-1 maps of sub-mm CO and 29-SiO, indicate a bipolar structure that may be asymmetric. The sub-mm and optical molecular emission exhibits temperatures of 35-113 and 200 K, respectively, whilst the atomic gas is much hotter, with temperatures of 5-15 kK, which may be due to shock heating. Conclusions. The detection of a bipolar structure in V1309 Sco indicates further similarities with the structure of another Galactic red nova, V4332 Sgr. It provides evidence that bipolar structures may be common in red novae. All collected data are consistent with V1309 Sco being a kinematically and chemically complex system.Comment: 22 pages, 16 figures. Submitted to Astronomy & Astrophysic
    • 

    corecore