2,287 research outputs found

    Prediksi Evolusi Diameter Aorta Berdasarkan Sinyal Trombus dari Magnetic Resonance Images pada Small Abdominal Aortic Aneurysms

    Get PDF
    Mempelajari gambar T1 dan T2 dari hasil pemeriksaan MR Imaging terhadap adanya trombus pada pasien Small Abdominal Aortic Aneurysms (SAAA) untuk mengetahui apakah sinyal trombus bisa dihubungkan dengan evolusi pembesaran diameter aorta, dan kemudian bisa memprediksi risiko pecahnya dinding aorta. Data diperoleh dari 16 pasien dengan SAAA. Gambar MR diperoleh dari Imager 3T (Trio TIM, Siemens Medical Solution, Jerman). Dalam protokol penelitian kami, gambar yang diambil adalah studi anatomi, gambar cine-MR, gambar T1/T2, gambar aliran darah, dan gambar setelah injeksi contrast agents. Manual tracing dilakukan untuk menentukan luas permukaan Aorta dan luas permukaan luminal guna menentukan luas permukaan trombus. Maksimum diameter aorta secara otomatis didapat dari manual tracing pada gambar T1. Parameter digunakan untuk mempelajari sinyal trombus adalah mean, median, standar deviasi, skewness dan kurtosis. Setiap parameter dihitung pada area thrombus, dan sinyal di otot digunakan untuk menormalisasikannya. Setelah itu, semua parameter akan dibandingkan dengan evolusi dari diameter aorta. Ditemukan 13 dari 16 pasien dengan SAAA memiliki trombus. Namun tidak ada korelasi antara sinyal trombus dengan evolusi dari diameter aorta (r sering kali kurang dari 0,3). Tapi beberapa parameter menunjukkan hubungan antara sinyal thrombus dan diameter maksimum (mean (r = 0318)), median (r = 0,318), skewness (r = 0304)) atau dengan evolusi diameter maksimum (mean (r = 0512)). Dapat disimpulkan bahwa perbandingan kategori trombus yang kami kalkulasikan secara matematik dengan kategori thrombus secara visualisasi mencapai 81% tingkat kesesuaian, tapi kita tidak bisa menggunakan sinyal trombus sendiri sebagai parameter untuk memprediksi evolusi dari diameter aorta

    The Evolution of the Galaxy Sizes in the NTT Deep Field: a Comparison with CDM Models

    Get PDF
    The sizes of the field galaxies with I<25 have been measured in the NTT Deep Field. Intrinsic sizes have been obtained after deconvolution of the PSF with a multigaussian method. The reliability of the method has been tested using both simulated data and HST observations of the same field. The distribution of the half light radii is peaked at r_{hl} 0.3 arcsec, in good agreement with that derived from HST images at the same magnitude. An approximate morphological classification has been obtained using the asymmetry and concentration parameters. The intrinsic sizes of the galaxies are shown as a function of their redshifts and absolute magnitudes using photometric redshifts derived from the multicolor catalog. While the brighter galaxies with morphological parameters typical of the normal spirals show a flat distribution in the range r_{d}=1-6 kpc, the fainter population at 0.4<z<0.8 dominates at small sizes. To explore the significance of this behaviour, an analytical rendition of the standard CDM model for the disc size evolution has been computed. The model showing the best fit to the local luminosity function and the Tully-Fisher relation is able to reproduce at intermediate redshifts a size distribution in general agreement with the observations, although it tends to underestimate the number of galaxies fainter than M_B~ -19 with disk sizes r_d~ 1-2 kpc.Comment: 16 pages, 11 figures, ApJ in press, Dec 199

    COSMOS: A Hybrid N-Body/Hydrodynamics Code for Cosmological Problems

    Get PDF
    We describe a new hybrid N-body/hydrodynamical code based on the particle-mesh (PM) method and the piecewise-parabolic method (PPM) for use in solving problems related to the evolution of large-scale structure, galaxy clusters, and individual galaxies. The code, named COSMOS, possesses several new features which distinguish it from other PM-PPM codes. In particular, to solve the Poisson equation we have written a new multigrid solver which can determine the gravitational potential of isolated matter distributions and which properly takes into account the finite-volume discretization required by PPM. All components of the code are constructed to work with a nonuniform mesh, preserving second-order spatial differences. The PPM code uses vacuum boundary conditions for isolated problems, preventing inflows when appropriate. The PM code uses a second-order variable-timestep time integration scheme. Radiative cooling and cosmological expansion terms are included. COSMOS has been implemented for parallel computers using the Parallel Virtual Machine (PVM) library, and it features a modular design which simplifies the addition of new physics and the configuration of the code for different types of problems. We discuss the equations solved by COSMOS and describe the algorithms used, with emphasis on these features. We also discuss the results of tests we have performed to establish that COSMOS works and to determine its range of validity.Comment: 43 pages, 14 figures, submitted to ApJS and revised according to referee's comment

    Constraining the Galaxy's dark halo with RAVE stars

    Get PDF
    We use the kinematics of 200000\sim200\,000 giant stars that lie within 1.5\sim 1.5 kpc of the plane to measure the vertical profile of mass density near the Sun. We find that the dark mass contained within the isodensity surface of the dark halo that passes through the Sun ((6±0.9)×1010M(6\pm0.9)\times10^{10}\,\mathrm{M_\odot}), and the surface density within 0.90.9 kpc of the plane ((69±10)Mpc2(69\pm10)\,\mathrm{M_\odot\,pc^{-2}}) are almost independent of the (oblate) halo's axis ratio qq. If the halo is spherical, 46 per cent of the radial force on the Sun is provided by baryons, and only 4.3 per cent of the Galaxy's mass is baryonic. If the halo is flattened, the baryons contribute even less strongly to the local radial force and to the Galaxy's mass. The dark-matter density at the location of the Sun is 0.0126q0.89Mpc3=0.48q0.89GeVcm30.0126\,q^{-0.89}\,\mathrm{M_\odot\,pc^{-3}}=0.48\,q^{-0.89}\,\mathrm{GeV\,cm^{-3}}. When combined with other literature results we find hints for a mildly oblate dark halo with q0.8q \simeq 0.8. Our value for the dark mass within the solar radius is larger than that predicted by cosmological dark-matter-only simulations but in good agreement with simulations once the effects of baryonic infall are taken into account. Our mass models consist of three double-exponential discs, an oblate bulge and a Navarro-Frenk-White dark-matter halo, and we model the dynamics of the RAVE stars in the corresponding gravitational fields by finding distribution functions f(J)f(\mathbf{J}) that depend on three action integrals. Statistical errors are completely swamped by systematic uncertainties, the most important of which are the distance to the stars in the photometric and spectroscopic samples and the solar distance to the Galactic centre. Systematics other than the flattening of the dark halo yield overall uncertainties 15\sim 15 per cent.Comment: 20 pages, 17 figures, accepted for publication in MNRA

    Single-lined Spectroscopic Binary Star Candidates in the RAVE Survey

    Get PDF
    Repeated spectroscopic observations of stars in the Radial Velocity Experiment (RAVE) database are used to identify and examine single-lined binary (SB1) candidates. The RAVE latest internal database (VDR3) includes radial velocities, atmospheric and other parameters for approximately quarter million of different stars with little less than 300,000 observations. In the sample of ~20,000 stars observed more than once, 1333 stars with variable radial velocities were identified. Most of them are believed to be SB1 candidates. The fraction of SB1 candidates among stars with several observations is between 10% and 15% which is the lower limit for binarity among RAVE stars. Due to the distribution of time spans between the re-observation that is biased towards relatively short timescales (days to weeks), the periods of the identified SB1 candidates are most likely in the same range. Because of the RAVE's narrow magnitude range most of the dwarf candidates belong to the thin Galactic disk while the giants are part of the thick disk with distances extending to up to a few kpc. The comparison of the list of SB1 candidates to the VSX catalog of variable stars yielded several pulsating variables among the giant population with the radial velocity variations of up to few tens of km/s. There are 26 matches between the catalog of spectroscopic binary orbits (SB9) and the whole RAVE sample for which the given periastron time and the time of RAVE observation were close enough to yield a reliable comparison. RAVE measurements of radial velocities of known spectroscopic binaries are consistent with their published radial velocity curves.Comment: 10 pages, 7 figures, accepted for publication in A

    Weighing the local dark matter with RAVE red clump stars

    Get PDF
    We determine the Galactic potential in the solar neigbourhood from RAVE observations. We select red clump stars for which accurate distances, radial velocities, and metallicities have been measured. Combined with data from the 2MASS and UCAC catalogues, we build a sample of 4600 red clump stars within a cylinder of 500 pc radius oriented in the direction of the South Galactic Pole, in the range of 200 pc to 2000 pc distances. We deduce the vertical force and the total mass density distribution up to 2 kpc away from the Galactic plane by fitting a distribution function depending explicitly on three isolating integrals of the motion in a separable potential locally representing the Galactic one with four free parameters. Because of the deep extension of our sample, we can determine nearly independently the dark matter mass density and the baryonic disc surface mass density. We find (i) at 1kpc Kz/(2piG) = 68.5 pm 1.0 Msun/pc2, and (ii) at 2 kpc Kz/(2piG) = 96.9 pm 2.2 Msun/pc2. Assuming the solar Galactic radius at R0 = 8.5 kpc, we deduce the local dark matter density rhoDM (z=0) = 0.0143 pm 0.0011Msun pc3 = 0.542 pm 0.042 Gev/cm3 and the baryonic surface mass density Sigma = 44.4 pm 4.1 Msun/pc2 . Our results are in agreement with previously published Kz determinations up to 1 kpc, while the extension to 2 kpc shows some evidence for an unexpectedly large amount of dark matter. A flattening of the dark halo of order 0.8 can produce such a high local density in combination with a circular velocity of 240 km/s . Another explanation, allowing for a lower circular velocity, could be the presence of a secondary dark component, a very thick disc resulting either from the deposit of dark matter from the accretion of multiple small dwarf galaxies, or from the presence of an effective phantom thick disc in the context of effective galactic-scale modifications of gravity.Comment: 14 pages, 13 figures, accepted to Astronomy and Astrophysic

    Single photon emitters based on Ni/Si related defects in single crystalline diamond

    Full text link
    We present investigations on single Ni/Si related color centers produced via ion implantation into single crystalline type IIa CVD diamond. Testing different ion dose combinations we show that there is an upper limit for both the Ni and the Si dose 10^12/cm^2 and 10^10/cm^2 resp.) due to creation of excess fluorescent background. We demonstrate creation of Ni/Si related centers showing emission in the spectral range between 767nm and 775nm and narrow line-widths of 2nm FWHM at room temperature. Measurements of the intensity auto-correlation functions prove single-photon emission. The investigated color centers can be coarsely divided into two groups: Drawing from photon statistics and the degree of polarization in excitation and emission we find that some color centers behave as two-level, single-dipole systems whereas other centers exhibit three levels and contributions from two orthogonal dipoles. In addition, some color centers feature stable and bright emission with saturation count rates up to 78kcounts/s whereas others show fluctuating count rates and three-level blinking.Comment: 7 pages, submitted to Applied Physics B, revised versio

    Kinematic modelling of the Milky Way using the RAVE and GCS stellar surveys

    Get PDF
    We investigate the kinematic parameters of the Milky Way disc using the RAVE and GCS stellar surveys. We do this by fitting a kinematic model to the data taking the selection function of the data into account. For stars in the GCS we use all phase-space coordinates, but for RAVE stars we use only (l,b,vlos)(l,b,v_{\rm los}). Using MCMC technique, we investigate the full posterior distributions of the parameters given the data. We investigate the `age-velocity dispersion' relation for the three kinematic components (σR,σϕ,σz\sigma_R,\sigma_{\phi},\sigma_z), the radial dependence of the velocity dispersions, the Solar peculiar motion (U,V,WU_{\odot},V_{\odot}, W_{\odot} ), the circular speed Θ0\Theta_0 at the Sun and the fall of mean azimuthal motion with height above the mid-plane. We confirm that the Besan\c{c}on-style Gaussian model accurately fits the GCS data, but fails to match the details of the more spatially extended RAVE survey. In particular, the Shu distribution function (DF) handles non-circular orbits more accurately and provides a better fit to the kinematic data. The Gaussian distribution function not only fits the data poorly but systematically underestimates the fall of velocity dispersion with radius. We find that correlations exist between a number of parameters, which highlights the importance of doing joint fits. The large size of the RAVE survey, allows us to get precise values for most parameters. However, large systematic uncertainties remain, especially in VV_{\odot} and Θ0\Theta_0. We find that, for an extended sample of stars, Θ0\Theta_0 is underestimated by as much as 10%10\% if the vertical dependence of the mean azimuthal motion is neglected. Using a simple model for vertical dependence of kinematics, we find that it is possible to match the Sgr A* proper motion without any need for VV_{\odot} being larger than that estimated locally by surveys like GCS.Comment: 27 pages, 13 figures, accepted for publication in Ap
    corecore