5,667 research outputs found

    Dark Halo and Disk Galaxy Scaling Laws in Hierarchical Universes

    Get PDF
    We use cosmological N-body/gasdynamical simulations that include star formation and feedback to examine the proposal that scaling laws between the total luminosity, rotation speed, and angular momentum of disk galaxies reflect analogous correlations between the structural parameters of their surrounding dark matter halos. The numerical experiments follow the formation of galaxy-sized halos in two Cold Dark Matter dominated universes: the standard Omega=1 CDM scenario and the currently popular LCDM model. We find that the slope and scatter of the I-band Tully-Fisher relation are well reproduced in the simulations, although not, as proposed in recent work, as a result of the cosmological equivalence between halo mass and circular velocity: large systematic variations in the fraction of baryons that collapse to form galaxies and in the ratio between halo and disk circular velocities are observed in our numerical experiments. The Tully-Fisher slope and scatter are recovered in this model as a direct result of the dynamical response of the halo to the assembly of the luminous component of the galaxy. We conclude that models that neglect the self-gravity of the disk and its influence on the detailed structure of the halo cannot be used to derive meaningful estimates of the scatter or slope of the Tully-Fisher relation. Our models fail, however, to match the zero-point of the Tully-Fisher relation, as well as that of the relation linking disk rotation speed and angular momentum. These failures can be traced, respectively, to the excessive central concentration of dark halos formed in the Cold Dark Matter cosmogonies we explore and to the formation of galaxy disks as the final outcome of a sequence of merger events. (abridged)Comment: submitted to The Astrophysical Journa

    The cosmological origin of the Tully-Fisher relation

    Get PDF
    We use high-resolution cosmological simulations that include the effects of gasdynamics and star formation to investigate the origin of the Tully-Fisher relation in the standard Cold Dark Matter cosmogony. Luminosities are computed for each model galaxy using their full star formation histories and the latest spectrophotometric models. We find that at z=0 the stellar mass of model galaxies is proportional to the total baryonic mass within the virial radius of their surrounding halos. Circular velocity then correlates tightly with the total luminosity of the galaxy, reflecting the equivalence between mass and circular velocity of systems identified in a cosmological context. The slope of the relation steepens slightly from the red to the blue bandpasses, and is in fairly good agreement with observations. Its scatter is small, decreasing from \~0.45 mag in the U-band to ~0.34 mag in the K-band. The particular cosmological model we explore here seems unable to account for the zero-point of the correlation. Model galaxies are too faint at z=0 (by about two magnitudes) if the circular velocity at the edge of the luminous galaxy is used as an estimator of the rotation speed. The Tully-Fisher relation is brighter in the past, by about ~0.7 magnitudes in the B-band at z=1, at odds with recent observations of z~1 galaxies. We conclude that the slope and tightness of the Tully-Fisher relation can be naturally explained in hierarchical models but that its normalization and evolution depend strongly on the star formation algorithm chosen and on the cosmological parameters that determine the universal baryon fraction and the time of assembly of galaxies of different mass.Comment: 5 pages, 4 figures included, submitted to ApJ (Letters

    On the origin of the Tully-Fisher relation

    Get PDF
    We discuss the origin of the Tully-Fisher (TF) relation using the NN-body/SPH method, which includes cooling, star formation and stellar feedback of energy, mass and metals. We consider initially rotating overdense spheres, and trace formation processes of disk galaxies from z=25z=25 to z=0z=0 in the Cold Dark Matter (CDM) cosmology. To clarify the origin of the TF relation, we simulate formation of 14 galaxies with different masses and spin parameters, and compute observable values, such as the total magnitude and the line-width. We find that the simulated galaxies reproduce the slope and scatter of the TF relation: the slope is originated in the difference of total galactic masses, and the scatter is produced by the difference of initial spin parameters. As well as the TF relation, observed features of spiral galaxies, such as the exponential light-profile and the flat rotation curve, are reproduced in our simulations, which were assumed {\it a priori} in past semi-analytical approaches.Comment: 11 pages, including 6 figures, submitted to Ap

    Simulations of galaxy formation in a Λ cold dark matter universe : I : dynamical and photometric properties of a simulated disk galaxy.

    Get PDF
    We present a detailed analysis of the dynamical and photometric properties of a disk galaxy simulated in the cold dark matter (CDM) cosmogony. The galaxy is assembled through a number of high-redshift mergers followed by a period of quiescent accretion after z1 that lead to the formation of two distinct dynamical components: a spheroid of mostly old stars and a rotationally supported disk of younger stars. The surface brightness profile is very well approximated by the superposition of an R1/4 spheroid and an exponential disk. Each photometric component contributes a similar fraction of the total luminosity of the system, although less than a quarter of the stars form after the last merger episode at z1. In the optical bands the surface brightness profile is remarkably similar to that of Sab galaxy UGC 615, but the simulated galaxy rotates significantly faster and has a declining rotation curve dominated by the spheroid near the center. The decline in circular velocity is at odds with observation and results from the high concentration of the dark matter and baryonic components, as well as from the relatively high mass-to-light ratio of the stars in the simulation. The simulated galaxy lies 1 mag off the I-band Tully-Fisher relation of late-type spirals but seems to be in reasonable agreement with Tully-Fisher data on S0 galaxies. In agreement with previous simulation work, the angular momentum of the luminous component is an order of magnitude lower than that of late-type spirals of similar rotation speed. This again reflects the dominance of the slowly rotating, dense spheroidal component, to which most discrepancies with observation may be traced. On its own, the disk component has properties rather similar to those of late-type spirals: its luminosity, its exponential scale length, and its colors are all comparable to those of galaxy disks of similar rotation speed. This suggests that a different form of feedback than adopted here is required to inhibit the efficient collapse and cooling of gas at high redshift that leads to the formation of the spheroid. Reconciling, without fine-tuning, the properties of disk galaxies with the early collapse and high merging rates characteristic of hierarchical scenarios such as CDM remains a challenging, yet so far elusive, proposition

    Quantum dynamical response of ultracold few boson ensembles in finite optical lattices to multiple interaction quenches

    Full text link
    The correlated non-equilibrium quantum dynamics following a multiple interaction quench protocol for few-bosonic ensembles confined in finite optical lattices is investigated. The quenches give rise to an interwell tunneling and excite the cradle and a breathing mode. Several tunneling pathways open during the time interval of increased interactions, while only a few occur when the system is quenched back to its original interaction strength. The cradle mode, however, persists during and in between the quenches, while the breathing mode possesses dinstinct frequencies. The occupation of excited bands is explored in detail revealing a monotonic behavior with increasing quench amplitude and a non-linear dependence on the duration of the application of the quenched interaction strength. Finally, a periodic population transfer between momenta for quenches of increasing interaction is observed, with a power-law frequency dependence on the quench amplitude. Our results open the possibility to dynamically manipulate various excited modes of the bosonic system.Comment: 13 pages, 9 figure

    CIV Absorption From Galaxies in the Process of Formation

    Full text link
    We investigate the heavy element QSO absorption systems caused by gas condensations at high redshift which evolve into galaxies with circular velocity of 100 to 200 km/s at the present epoch. Artificial QSO spectra were generated for a variety of lines-of-sight through regions of the universe simulated with a hydrodynamics code. The CIV and HI absorption features in these spectra closely resemble observed CIV and HI absorption systems over a wide range in column density. CIV absorption complexes with multiple-component structure and velocity spreads up to about 600 km/s are found. The broadest systems are caused by lines-of-sight passing through groups of protogalactic clumps with individual velocity dispersions of less than 150 km/s aligned along filamentary structures. The temperature of most of the gas does not take the photoionization equilibrium value. This invalidates density and size estimates derived from thermal equilibrium models. Consequences for metal abundance determinations are briefly discussed. We predict occasional exceptionally large ratios of CIV to HI column density (up to a third) for lines-of-sight passing through compact halos of hot gas with temperature close to 3 10^5 K. Our model may be able to explain both high-ionization multi-component heavy-element absorbers and damped Lyman alpha systems as groups of small protogalactic clumps.Comment: 13 pages, uuencoded postscript file, 4 figures included submitted to ApJ (Letters); complete version also available at http://www.mpa-garching.mpg.de/Galaxien/prep.htm

    Star Formation, Supernovae Feedback and the Angular Momentum Problem in Numerical CDM Cosmogony: Half Way There?

    Get PDF
    We present a smoothed particle hydrodynamic (SPH) simulation that reproduces a galaxy that is a moderate facsimile of those observed. The primary failing point of previous simulations of disk formation, namely excessive transport of angular momentum from gas to dark matter, is ameliorated by the inclusion of a supernova feedback algorithm that allows energy to persist in the model ISM for a period corresponding to the lifetime of stellar associations. The inclusion of feedback leads to a disk at a redshift z=0.52z=0.52, with a specific angular momentum content within 10% of the value required to fit observations. An exponential fit to the disk baryon surface density gives a scale length within 17% of the theoretical value. Runs without feedback, with or without star formation, exhibit the drastic angular momentum transport observed elsewhere.Comment: 4 pages, 3 figures, accepted for publication in ApJ Letter
    • …
    corecore