3,917 research outputs found

    Performance of low-pressure-ratio low-tip-speed fan stage with blade tip solidity of 0.65

    Get PDF
    The overall and blade-element performance of a low pressure ratio, low tip speed fan stage is presented over the stable operating range at rotative speeds from 90 to 120 percent of design speed. Stage peak efficiency of 0.927 was obtained at a weight flow of 32.4 kg/sec (190.31 kg/sec/sq m of annulus area) and a pressure ratio of 1.134. The stall margin at design speed and peak efficiency was 15.3 percent

    Performance of inlet stage of transonic compressor

    Get PDF
    The overall and blade-element performances are presented over the stable flow operating range of the stage at the design tip speed of 426 m/sec. Stage peak efficiency of 0.83 was obtained at a weight flow of 28.8 kg/sec and a pressure ratio of 1.52. The stall margin for the stage was 8 percent based on weight flow and pressure ratio at peak efficiency and stall. The rotor appears to be stalling prematurely as evidenced by high rotor tip losses

    Communication in quantum networks of logical bus topology

    Full text link
    Perfect state transfer (PST) is discussed in the context of passive quantum networks with logical bus topology, where many logical nodes communicate using the same shared media, without any external control. The conditions under which, a number of point-to-point PST links may serve as building blocks for the design of such multi-node networks are investigated. The implications of our results are discussed in the context of various Hamiltonians that act on the entire network, and are capable of providing PST between the logical nodes of a prescribed set in a deterministic manner.Comment: 9 pages, 1 figur

    Virtues, ecological momentary assessment/intervention and smartphone technology

    Get PDF
    Virtues, broadly understood as stable and robust dispositions for certain responses across morally relevant situations, have been a growing topic of interest in psychology. A central topic of discussion has been whether studies showing that situations can strongly influence our responses provide evidence against the existence of virtues (as a kind of stable and robust disposition). In this review, we examine reasons for thinking that the prevailing methods for examining situational influences are limited in their ability to test dispositional stability and robustness; or, then, whether virtues exist. We make the case that these limitations can be addressed by aggregating repeated, cross-situational assessments of environmental, psychological and physiological variables within everyday life—a form of assessment often called ecological momentary assessment (EMA, or experience sampling). We, then, examine how advances in smartphone application (app) technology, and their mass adoption, make these mobile devices an unprecedented vehicle for EMA and, thus, the psychological study of virtue. We, additionally, examine how smartphones might be used for virtue development by promoting changes in thought and behavior within daily life; a technique often called ecological momentary intervention (EMI). While EMA/I have become widely employed since the 1980s for the purposes of understanding and promoting change amongst clinical populations, few EMA/I studies have been devoted to understanding or promoting virtues within non-clinical populations. Further, most EMA/I studies have relied on journaling, PDAs, phone calls and/or text messaging systems. We explore how smartphone app technology provides a means of making EMA a more robust psychological method, EMI a more robust way of promoting positive change, and, as a result, opens up new possibilities for studying and promoting virtues

    The role of quantum fluctuations in the optomechanical properties of a Bose-Einstein condensate in a ring cavity

    Full text link
    We analyze a detailed model of a Bose-Einstein condensate trapped in a ring optical resonator and contrast its classical and quantum properties to those of a Fabry-P{\'e}rot geometry. The inclusion of two counter-propagating light fields and three matter field modes leads to important differences between the two situations. Specifically, we identify an experimentally realizable region where the system's behavior differs strongly from that of a BEC in a Fabry-P\'{e}rot cavity, and also where quantum corrections become significant. The classical dynamics are rich, and near bifurcation points in the mean-field classical system, the quantum fluctuations have a major impact on the system's dynamics.Comment: 11 pages, 11 figures, submitted to PR

    Application of advanced computational codes in the design of an experiment for a supersonic throughflow fan rotor

    Get PDF
    Increased emphasis on sustained supersonic or hypersonic cruise has revived interest in the supersonic throughflow fan as a possible component in advanced propulsion systems. Use of a fan that can operate with a supersonic inlet axial Mach number is attractive from the standpoint of reducing the inlet losses incurred in diffusing the flow from a supersonic flight Mach number to a subsonic one at the fan face. The design of the experiment using advanced computational codes to calculate the components required is described. The rotor was designed using existing turbomachinery design and analysis codes modified to handle fully supersonic axial flow through the rotor. A two-dimensional axisymmetric throughflow design code plus a blade element code were used to generate fan rotor velocity diagrams and blade shapes. A quasi-three-dimensional, thin shear layer Navier-Stokes code was used to assess the performance of the fan rotor blade shapes. The final design was stacked and checked for three-dimensional effects using a three-dimensional Euler code interactively coupled with a two-dimensional boundary layer code. The nozzle design in the expansion region was analyzed with a three-dimensional parabolized viscous code which corroborated the results from the Euler code. A translating supersonic diffuser was designed using these same codes

    A family of 2-dimensional Laguerre planes of generalised shear type

    Get PDF

    Nanometer-scale sharpness in corner-overgrown heterostructures

    Full text link
    A corner-overgrown GaAs/AlGaAs heterostructure is investigated with transmission and scanning transmission electron microscopy, demonstrating self-limiting growth of an extremely sharp corner profile of 3.5 nm width. In the AlGaAs layers we observe self-ordered diagonal stripes, precipitating exactly at the corner, which are regions of increased Al content measured by an XEDS analysis. A quantitative model for self-limited growth is adapted to the present case of faceted MBE growth, and the corner sharpness is discussed in relation to quantum confined structures. We note that MBE corner overgrowth maintains nm-sharpness even after microns of growth, allowing the realization of corner-shaped nanostructures.Comment: 4 pages, 3 figure

    Novel metallic and insulating states at a bent quantum Hall junction

    Full text link
    A non-planar geometry for the quantum Hall (QH) effect is studied, whereby two quantum Hall (QH) systems are joined at a sharp right angle. When both facets are at equal filling factor nu the junction hosts a channel with non-quantized conductance, dependent on nu. The state is metallic at nu = 1/3, with conductance along the junction increasing as the temperature T drops. At nu = 1, 2 it is strongly insulating, and at nu = 3, 4 shows only weak T dependence. Upon applying a dc voltage bias along the junction, the differential conductance again shows three different behaviors. Hartree calculations of the dispersion at the junction illustrate possible explanations, and differences from planar QH structures are highlighted.Comment: 5 pages, 4 figures, text + figs revised for clarit
    • …
    corecore