1,212 research outputs found
Gas flow environmental and heat transfer nonrotating 3D program
A complete set of benchmark quality data for the flow and heat transfer within a large rectangular turning duct is being compiled. These data will be used to evaluate and verify three dimensional internal viscous flow models and computational codes. The analytical objective is to select such a computational code and define the capabilities of this code to predict the experimental results. Details of the proper code operation will be defined and improvements to the code modeling capabilities will be formulated
Breakdown of the classical double copy for the effective action of dilaton-gravity at NNLO
We demonstrate that a recently proposed classical double copy procedure to construct the effective action of two massive particles in dilaton-gravity from the analogous problem of two color charged particles in Yang-Mills gauge theory fails at next-to-next-to-leading orders in the post-Minkowskian (3PM) or post-Newtonian (2PN) expansions
New insights on the matter-gravity coupling paradigm
The coupling between matter and gravity in General Relativity is given by a
proportionality relation between the stress tensor and the geometry. This is an
oriented assumption driven by the fact that both the stress tensor and the
Einstein tensor are divergenceless. However, General Relativity is in essence a
nonlinear theory, so there is no obvious reason why the coupling to matter
should be linear. On another hand, modified theories of gravity usually affect
the vacuum dynamics, yet keep the coupling to matter linear. In this Letter we
address the implications of consistent nonlinear gravity/matter coupling. The
Eddington inspired Born-Infeld theory recently introduced by Banados and
Ferreira provides an enlightening realization of such coupling modifications.
We find that this theory coupled to a perfect fluid reduces to General
Relativity coupled to a nonlinearly modified perfect fluid, leading to an
ambiguity between modified coupling and modified equation of state. We discuss
observational consequences of this degeneracy and argue that such a completion
of General Relativity is viable from both an experimental and theoretical point
of view through energy conditions, consistency, and singularity-avoidance
perspectives. We use these results to discuss the impact of changing the
coupling paradigm.Comment: 6 pages, 2 figures, v2: revised version, v3: published versio
Tidal response from scattering and the role of analytic continuation
The tidal response of a compact object is a key gravitational-wave observable encoding information about its interior. This link is subtle due to the nonlinearities of general relativity. We show that considering a scattering process bypasses challenges with potential ambiguities, as the tidal response is determined by the asymptotic in- and outgoing waves at null infinity. As an application of the general method, we analyze scalar waves scattering off a nonspinning black hole and demonstrate that the frequency-dependent tidal response calculated for arbitrary dimensions and multipoles reproduces known results for the Love number and absorption in limiting cases. In addition, we discuss the definition of the response based on gauge-invariant observables obtained from an effective action description, and clarify the role of analytic continuation for robustly (i) extracting the response and the physical information it contains, and (ii) distinguishing high-order post-Newtonian corrections from finite-size effects in a binary system. Our work is important for interpreting upcoming gravitational-wave data for subatomic physics of ultradense matter in neutron stars, probing black holes and gravity, and looking for beyond standard model fields
Appropriate strategy for immunisation of children in India 3. Community-based annual pulse (cluster) immunisation
A strategy of annual pulse vaccination is proposed as the most appropriate technique for achieving high immunisation rates in our country. Because vaccine is taken to children in their communities on announced dates, acceptance will be much higher than with conventional clinic vaccination. A simplified immunisation schedule and a family-retained record are used to reduce complexity. Vaccines and other materials are managed at a district level; the local arrangements for vaccination are made by the PHC staff and village level workers. The advantages of this technique include higher coverage, shortened and strengthened cold chain, reduced red tape for recipients of vaccine, the involvement of private health institutions in a national campaign, and a strengthening of the PHC system
Spin effects on neutron star fundamental-mode dynamical tides: phenomenology and comparison to numerical simulations
Gravitational waves from neutron star binary inspirals contain information on strongly-interacting matter in unexplored, extreme regimes. Extracting this requires robust theoretical models of the signatures of matter in the gravitational-wave signals due to spin and tidal effects. In fact, spins can have a significant impact on the tidal excitation of the quasi-normal modes of a neutron star, which is not included in current state-of-the-art waveform models. We develop a simple approximate description that accounts for the Coriolis effect of spin on the tidal excitation of the neutron star's quadrupolar and octupolar fundamental quasi-normal modes and incorporate it in the SEOBNRv4T waveform model. We show that the Coriolis effect introduces only one new interaction term in an effective action in the co-rotating frame of the star, and fix the coefficient by considering the spin-induced shift in the resonance frequencies that has been computed numerically for the mode frequencies of rotating neutron stars in the literature. We investigate the impact of relativistic corrections due to the gravitational redshift and frame-dragging effects, and identify important directions where more detailed theoretical developments are needed in the future. Comparisons of our new model to numerical relativity simulations of double neutron star and neutron star-black hole binaries show improved consistency in the agreement compared to current models used in data analysis
Relativistic effective action of dynamical gravitomagnetic tides for slowly rotating neutron stars
Gravitomagnetic quasi-normal modes of neutron stars are resonantly excited by tidal effects during a binary inspiral, leading to a potentially measurable effect in the gravitational wave signal. We take an important step towards incorporating these effects in waveform models by developing a relativistic effective action for the gravitomagnetic dynamics that clarifies a number of subtleties. Working in the slow-rotation limit, we first consider the post-Newtonian approximation and explicitly derive the effective action from the equations of motion. We demonstrate that this formulation opens a novel way to compute mode frequencies, yields insights into the relevant matter variables, and elucidates the role of a shift symmetry of the fluid properties under a displacement of the gravitomagnetic mode amplitudes. We then construct a fully relativistic action based on the symmetries and a power counting scheme. This action involves four coupling coefficients that depend on the internal structure of the neutron star and characterize the key matter parameters imprinted in the gravitational waves. We show that, after fixing one of the coefficients by normalization, the other three directly involve the two kinds of gravitomagnetic Love numbers (static and irrotational), and the mode frequencies. We discuss several interesting features and dynamical consequences of this action. Our results provide the foundation for deriving precision predictions of gravitomagnetic effects, and the nuclear physics they encode, for gravitational-wave astronomy
Reduced Hamiltonian for next-to-leading order Spin-Squared Dynamics of General Compact Binaries
Within the post Newtonian framework the fully reduced Hamiltonian (i.e., with
eliminated spin supplementary condition) for the next-to-leading order
spin-squared dynamics of general compact binaries is presented. The Hamiltonian
is applicable to the spin dynamics of all kinds of binaries with
self-gravitating components like black holes and/or neutron stars taking into
account spin-induced quadrupolar deformation effects in second post-Newtonian
order perturbation theory of Einstein's field equations. The corresponding
equations of motion for spin, position and momentum variables are given in
terms of canonical Poisson brackets. Comparison with a nonreduced potential
calculated within the Effective Field Theory approach is made.Comment: 11 pages, minor changes to match published version at CQ
Spin-squared Hamiltonian of next-to-leading order gravitational interaction
The static, i.e., linear momentum independent, part of the next-to-leading
order (NLO) gravitational spin(1)-spin(1) interaction Hamiltonian within the
post-Newtonian (PN) approximation is calculated from a 3-dim. covariant ansatz
for the Hamilton constraint. All coefficients in this ansatz can be uniquely
fixed for black holes. The resulting Hamiltonian fits into the canonical
formalism of Arnowitt, Deser, and Misner (ADM) and is given in their
transverse-traceless (ADMTT) gauge. This completes the recent result for the
momentum dependent part of the NLO spin(1)-spin(1) ADM Hamiltonian for binary
black holes (BBH). Thus, all PN NLO effects up to quadratic order in spin for
BBH are now given in Hamiltonian form in the ADMTT gauge. The equations of
motion resulting from this Hamiltonian are an important step toward more
accurate calculations of templates for gravitational waves.Comment: REVTeX4, 10 pages, v2: minor improvements in the presentation, v3:
added omission in Eq. (4) and corrected coefficients in the result, Eq. (9);
version to appear in Phys. Rev.
- …