97 research outputs found

    Structure of the Hemagglutinin Precursor Cleavage Site, a Determinant of Influenza Pathogenicity and the Origin of the Labile Conformation

    Get PDF
    AbstractThe membrane fusion potential of influenza HA, like many viral membrane-fusion glycoproteins, is generated by proteolytic cleavage of a biosynthetic precursor. The three-dimensional structure of ectodomain of the precursor HA0 has been determined and compared with that of cleaved HA. The cleavage site is a prominent surface loop adjacent to a novel cavity; cleavage results in structural rearrangements in which the nonpolar amino acids near the new amino terminus bury ionizable residues in the cavity that are implicated in the low-pH-induced conformational change. Amino acid insertions at the cleavage site in HAs of virulent avian viruses and those of viruses isolated from the recent severe outbreak of influenza in humans in Hong Kong would extend this surface loop, facilitating intracellular cleavage

    The Interplay between the Host Receptor and Influenza Virus Hemagglutinin and Neuraminidase

    Get PDF
    The hemagglutinin (HA) and neuraminidase (NA) glycoproteins of influenza A virus are responsible for the surface interactions of the virion with the host. Entry of the virus is mediated by functions of the HA: binding to cellular receptors and facilitating fusion of the virion membrane with the endosomal membrane. The HA structure contains receptor binding sites in the globular membrane distal head domains of the trimer, and the fusion machinery resides in the stem region. These sites have specific characteristics associated with subtype and host, and the differences often define species barriers. For example, avian viruses preferentially recognize Ξ±2,3-Sialic acid terminating glycans as receptors and mammalian viruses recognize Ξ±2,6-Sialic acid. The neuraminidase, or the receptor-destroying protein, cleaves the sialic acid from cellular membrane constituents and viral glycoproteins allowing for egress of nascent virions. A functional balance of activity has been demonstrated between the two glycoproteins, resulting in an optimum level of HA affinity and NA enzymatic cleavage to allow for productive infection. As more is understood about both HA and NA, the relevance for functional balance between HA and NA continues to expand, with potential implications for interspecies transmission, host adaptation, and pathogenicity

    Studies of the Binding Properties of Influenza Hemagglutinin Receptor-Site Mutants

    Get PDF
    AbstractSite-specific mutations have been made in the influenza hemagglutinin (HA) receptor binding site to assess the contribution of individual amino acid residues to receptor recognition. Screening of mutant HAs, expressed using recombinant vaccinia virus-infected cells, for their abilities to bind human erythrocytes indicated that substitutions involving conserved residues Y98F, H183F, and L194A severely restricted binding and that the substitution W153A prevented cell surface expression of HA. Mutation of residues E190 and S228 that are in positions to form hydrogen bonds with the 9-OH of sialic acid appeared to increase erythrocyte binding slightly, as did the substitution G225R. Substitutions of other residues that are directly or indirectly involved in receptor binding, S136T, S136A, Y195F, G225D, and L226P, had intermediate effects on binding between these two extremes. Estimates of changes in receptor binding specificity based on inhibition of binding to erythrocytes by nonimmune horse sera indicated that mutants G225R and L226P, unlike wild-type HA, were not inhibited; Y195F and G225D mutants were, like wild type, inhibited; and erythrocyte binding by mutants S136A, S136T, E190A, and S228G was only partially inhibited. Viruses containing mutant HAs Y98F, S136T, G225D, and S228G that cover the range of erythrocyte binding properties observed were also constructed by transfection. All four transfectant viruses replicated in MDCK cells and embryonated hens' eggs as efficiently as wild-type X-31 virus, although the Y98F mutant virus was unable to agglutinate erythrocytes. Mutant MDCK cells that have reduced levels of cell surface sialic acids were susceptible to infection by S136T, G225D, and S228G transfectant viruses and by wild type but not by the Y98F transfectant virus

    VIGOR, an annotation program for small viral genomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The decrease in cost for sequencing and improvement in technologies has made it easier and more common for the re-sequencing of large genomes as well as parallel sequencing of small genomes. It is possible to completely sequence a small genome within days and this increases the number of publicly available genomes. Among the types of genomes being rapidly sequenced are those of microbial and viral genomes responsible for infectious diseases. However, accurate gene prediction is a challenge that persists for decoding a newly sequenced genome. Therefore, accurate and efficient gene prediction programs are highly desired for rapid and cost effective surveillance of RNA viruses through full genome sequencing.</p> <p>Results</p> <p>We have developed VIGOR (Viral Genome ORF Reader), a web application tool for gene prediction in influenza virus, rotavirus, rhinovirus and coronavirus subtypes. VIGOR detects protein coding regions based on sequence similarity searches and can accurately detect genome specific features such as frame shifts, overlapping genes, embedded genes, and can predict mature peptides within the context of a single polypeptide open reading frame. Genotyping capability for influenza and rotavirus is built into the program. We compared VIGOR to previously described gene prediction programs, ZCURVE_V, GeneMarkS and FLAN. The specificity and sensitivity of VIGOR are greater than 99% for the RNA viral genomes tested.</p> <p>Conclusions</p> <p>VIGOR is a user friendly web-based genome annotation program for five different viral agents, influenza, rotavirus, rhinovirus, coronavirus and SARS coronavirus. This is the first gene prediction program for rotavirus and rhinovirus for public access. VIGOR is able to accurately predict protein coding genes for the above five viral types and has the capability to assign function to the predicted open reading frames and genotype influenza virus. The prediction software was designed for performing high throughput annotation and closure validation in a post-sequencing production pipeline.</p

    Interleukin-6 Is a Potential Biomarker for Severe Pandemic H1N1 Influenza A Infection

    Get PDF
    Pandemic H1N1 influenza A (H1N1pdm) is currently a dominant circulating influenza strain worldwide. Severe cases of H1N1pdm infection are characterized by prolonged activation of the immune response, yet the specific role of inflammatory mediators in disease is poorly understood. The inflammatory cytokine IL-6 has been implicated in both seasonal and severe pandemic H1N1 influenza A (H1N1pdm) infection. Here, we investigated the role of IL-6 in severe H1N1pdm infection. We found IL-6 to be an important feature of the host response in both humans and mice infected with H1N1pdm. Elevated levels of IL-6 were associated with severe disease in patients hospitalized with H1N1pdm infection. Notably, serum IL-6 levels associated strongly with the requirement of critical care admission and were predictive of fatal outcome. In C57BL/6J, BALB/cJ, and B6129SF2/J mice, infection with A/Mexico/4108/2009 (H1N1pdm) consistently triggered severe disease and increased IL-6 levels in both lung and serum. Furthermore, in our lethal C57BL/6J mouse model of H1N1pdm infection, global gene expression analysis indicated a pronounced IL-6 associated inflammatory response. Subsequently, we examined disease and outcome in IL-6 deficient mice infected with H1N1pdm. No significant differences in survival, weight loss, viral load, or pathology were observed between IL-6 deficient and wild-type mice following infection. Taken together, our findings suggest IL-6 may be a potential disease severity biomarker, but may not be a suitable therapeutic target in cases of severe H1N1pdm infection due to our mouse data

    Low Pathogenic Avian Influenza Isolates from Wild Birds Replicate and Transmit via Contact in Ferrets without Prior Adaptation

    Get PDF
    Direct transmission of avian influenza viruses to mammals has become an increasingly investigated topic during the past decade; however, isolates that have been primarily investigated are typically ones originating from human or poultry outbreaks. Currently there is minimal comparative information on the behavior of the innumerable viruses that exist in the natural wild bird host. We have previously demonstrated the capacity of numerous North American avian influenza viruses isolated from wild birds to infect and induce lesions in the respiratory tract of mice. In this study, two isolates from shorebirds that were previously examined in mice (H1N9 and H6N1 subtypes) are further examined through experimental inoculations in the ferret with analysis of viral shedding, histopathology, and antigen localization via immunohistochemistry to elucidate pathogenicity and transmission of these viruses. Using sequence analysis and glycan binding analysis, we show that these avian viruses have the typical avian influenza binding pattern, with affinity for cell glycoproteins/glycolipids having terminal sialic acid (SA) residues with Ξ± 2,3 linkage [Neu5Ac(Ξ±2,3)Gal]. Despite the lack of Ξ±2,6 linked SA binding, these AIVs productively infected both the upper and lower respiratory tract of ferrets, resulting in nasal viral shedding and pulmonary lesions with minimal morbidity. Moreover, we show that one of the viruses is able to transmit to ferrets via direct contact, despite its binding affinity for Ξ± 2,3 linked SA residues. These results demonstrate that avian influenza viruses, which are endemic in aquatic birds, can potentially infect humans and other mammals without adaptation. Finally this work highlights the need for additional study of the wild bird subset of influenza viruses in regard to surveillance, transmission, and potential for reassortment, as they have zoonotic potential

    Novel Avian Influenza H7N3 Strain Outbreak, British Columbia

    Get PDF
    Genome sequences of chicken (low pathogenic avian influenza [LPAI] and highly pathogenic avian influenza [HPAI]) and human isolates from a 2004 outbreak of H7N3 avian influenza in Canada showed a novel insertion in the HA0 cleavage site of the human and HPAI isolate. This insertion likely occurred by recombination between the hemagglutination and matrix genes in the LPAI virus

    Avian Influenza Viruses Infect Primary Human Bronchial Epithelial Cells Unconstrained by Sialic Acid Ξ±2,3 Residues

    Get PDF
    Avian influenza viruses (AIV) are an important emerging threat to public health. It is thought that sialic acid (sia) receptors are barriers in cross-species transmission where the binding preferences of AIV and human influenza viruses are sias Ξ±2,3 versus Ξ±2,6, respectively. In this study, we show that a normal fully differentiated, primary human bronchial epithelial cell model is readily infected by low pathogenic H5N1, H5N2 and H5N3 AIV, which primarily bind to sia Ξ±2,3 moieties, and replicate in these cells independent of specific sias on the cell surface. NHBE cells treated with neuraminidase prior to infection are infected by AIV despite removal of sia Ξ±2,3 moieties. Following AIV infection, higher levels of IP-10 and RANTES are secreted compared to human influenza virus infection, indicating differential chemokine expression patterns, a feature that may contribute to differences in disease pathogenesis between avian and human influenza virus infections in humans

    Characterizing Emerging Canine H3 Influenza Viruses.

    Get PDF
    The continual emergence of novel influenza A strains from non-human hosts requires constant vigilance and the need for ongoing research to identify strains that may pose a human public health risk. Since 1999, canine H3 influenza A viruses (CIVs) have caused many thousands or millions of respiratory infections in dogs in the United States. While no human infections with CIVs have been reported to date, these viruses could pose a zoonotic risk. In these studies, the National Institutes of Allergy and Infectious Diseases (NIAID) Centers of Excellence for Influenza Research and Surveillance (CEIRS) network collaboratively demonstrated that CIVs replicated in some primary human cells and transmitted effectively in mammalian models. While people born after 1970 had little or no pre-existing humoral immunity against CIVs, the viruses were sensitive to existing antivirals and we identified a panel of H3 cross-reactive human monoclonal antibodies (hmAbs) that could have prophylactic and/or therapeutic value. Our data predict these CIVs posed a low risk to humans. Importantly, we showed that the CEIRS network could work together to provide basic research information important for characterizing emerging influenza viruses, although there were valuable lessons learned
    • …
    corecore