1,731 research outputs found

    Penrose Quantum Antiferromagnet

    Full text link
    The Penrose tiling is a perfectly ordered two dimensional structure with fivefold symmetry and scale invariance under site decimation. Quantum spin models on such a system can be expected to differ significantly from more conventional structures as a result of its special symmetries. In one dimension, for example, aperiodicity can result in distinctive quantum entanglement properties. In this work, we study ground state properties of the spin-1/2 Heisenberg antiferromagnet on the Penrose tiling, a model that could also be pertinent for certain three dimensional antiferromagnetic quasicrystals. We show, using spin wave theory and quantum Monte Carlo simulation, that the local staggered magnetizations strongly depend on the local coordination number z and are minimized on some sites of five-fold symmetry. We present a simple explanation for this behavior in terms of Heisenberg stars. Finally we show how best to represent this complex inhomogeneous ground state, using the "perpendicular space" representation of the tiling.Comment: 4 pages, 5 figure

    Dynamical vacuum energy, holographic quintom, and the reconstruction of scalar-field dark energy

    Get PDF
    When taking the holographic principle into account, the vacuum energy will acquire dynamical property that its equation of state is evolving. The current available observational data imply that the holographic vacuum energy behaves as quintom-type dark energy. We adopt the viewpoint of that the scalar field models of dark energy are effective theories of an underlying theory of dark energy. If we regard the scalar field model as an effective description of such a holographic vacuum theory, we should be capable of using the scalar field model to mimic the evolving behavior of the dynamical vacuum energy and reconstructing this scalar field model according to the fits of the observational dataset. We find the generalized ghost condensate model is a good choice for depicting the holographic vacuum energy since it can easily realize the quintom behavior. We thus reconstruct the function h(ϕ)h(\phi) of the generalized ghost condensate model using the best-fit results of the observational data.Comment: 13 pages, 3 figures; references updated, accepted for publication in Phys. Rev.

    Coupled quintessence and curvature-assisted acceleration

    Get PDF
    Spatially homogeneous models with a scalar field non-minimally coupled to the space-time curvature or to the ordinary matter content are analysed with respect to late-time asymptotic behaviour, in particular to accelerated expansion and isotropization. It is found that a direct coupling to the curvature leads to asymptotic de Sitter expansion in arbitrary exponential potentials, thus yielding a positive cosmological constant although none is apparent in the potential. This holds true regardless of the steepness of the potential or the smallness of the coupling constant. For matter-coupled scalar fields, the asymptotics are obtained for a large class of positive potentials, generalizing the well-known cosmic no-hair theorems for minimal coupling. In this case it is observed that the direct coupling to matter does not impact the late-time dynamics essentially.Comment: 17 pages, no figures. v2: typos correcte

    Inflationary spacetimes are not past-complete

    Full text link
    Many inflating spacetimes are likely to violate the weak energy condition, a key assumption of singularity theorems. Here we offer a simple kinematical argument, requiring no energy condition, that a cosmological model which is inflating -- or just expanding sufficiently fast -- must be incomplete in null and timelike past directions. Specifically, we obtain a bound on the integral of the Hubble parameter over a past-directed timelike or null geodesic. Thus inflationary models require physics other than inflation to describe the past boundary of the inflating region of spacetime.Comment: We improve the basic argument to apply to a wider class of spacetimes, use a better title and add a discussion of cyclic models. 4 pages, 1 figure, RevTe

    Ranking and Repulsing Supermartingales for Reachability in Probabilistic Programs

    Full text link
    Computing reachability probabilities is a fundamental problem in the analysis of probabilistic programs. This paper aims at a comprehensive and comparative account on various martingale-based methods for over- and under-approximating reachability probabilities. Based on the existing works that stretch across different communities (formal verification, control theory, etc.), we offer a unifying account. In particular, we emphasize the role of order-theoretic fixed points---a classic topic in computer science---in the analysis of probabilistic programs. This leads us to two new martingale-based techniques, too. We give rigorous proofs for their soundness and completeness. We also make an experimental comparison using our implementation of template-based synthesis algorithms for those martingales

    Cosmological scaling solutions of minimally coupled scalar fields in three dimensions

    Full text link
    We examine Friedmann-Robertson-Walker models in three spacetime dimensions. The matter content of the models is composed of a perfect fluid, with a γ\gamma-law equation of state, and a homogeneous scalar field minimally coupled to gravity with a self-interacting potential whose energy density red-shifts as a2νa^{-2 \nu}, where a denotes the scale factor. Cosmological solutions are presented for different range of values of γ\gamma and ν\nu. The potential required to agree with the above red-shift for the scalar field energy density is also calculated.Comment: LaTeX2e, 11 pages, 4 figures. To be published in Classical and Quantum Gravit

    Reconstructing a String-Inspired Non-minimally Coupled Quintom Model

    Full text link
    Motivated by the recent work of Zhang and Chen \cite{bin}, we generalize their work to the non-minimally coupled case. We consider a quintom model of dark energy with a single scalar field TT given by a Lagrangian which inspired by tachyonic Lagrangian in string theory. We consider non-minimal coupling of tachyon field to the scalar curvature, then we reconstruct this model in the light of three forms of parametrization for dynamical dark energy.Comment: 12 pages, 5 figure

    Can black holes be torn up by phantom dark energy in cyclic cosmology?

    Full text link
    Infinitely cyclic cosmology is often frustrated by the black hole problem. It has been speculated that this obstacle in cyclic cosmology can be removed by taking into account a peculiar cyclic model derived from loop quantum cosmology or the braneworld scenario, in which phantom dark energy plays a crucial role. In this peculiar cyclic model, the mechanism of solving the black hole problem is through tearing up black holes by phantom. However, using the theory of fluid accretion onto black holes, we show in this paper that there exists another possibility: that black holes cannot be torn up by phantom in this cyclic model. We discussed this possibility and showed that the masses of black holes might first decrease and then increase, through phantom accretion onto black holes in the expanding stage of the cyclic universe.Comment: 6 pages, 2 figures; discussions adde

    Rules for Computing Symmetry, Density and Stoichiometry in a Quasi-Unit-Cell Model of Quasicrystals

    Full text link
    The quasi-unit cell picture describes the atomic structure of quasicrystals in terms of a single, repeating cluster which overlaps neighbors according to specific overlap rules. In this paper, we discuss the precise relationship between a general atomic decoration in the quasi-unit cell picture atomic decorations in the Penrose tiling and in related tiling pictures. Using these relations, we obtain a simple, practical method for determining the density, stoichiometry and symmetry of a quasicrystal based on the atomic decoration of the quasi-unit cell taking proper account of the sharing of atoms between clusters.Comment: 14 pages, 8 figure

    Quintessence and cosmic acceleration

    Full text link
    A cosmological model with perfect fluid and self-interacting quintessence field is considered in the framework of the spatially flat Friedmann-Robertson-Walker (FRW) geometry. By assuming that all physical quantities depend on the volume scale factor of the Universe, the general solution of the gravitational field equations can be expressed in an exact parametric form. The quintessence field is a free parameter. With an appropriate choice of the scalar field a class of exact solutions is obtained, with an exponential type scalar field potential fixed via the gravitational field equations. The general physical behavior of the model is consistent with the recent cosmological scenario favored by supernova Type Ia observations, indicating an accelerated expansion of the Universe.Comment: 6 pages, 3 figures, to appear in Int. J. Mod. Phys.
    corecore