98 research outputs found
A constitutive law for finite element contact problems with unclassical friction
Techniques for modeling complex, unclassical contact-friction problems arising in solid and structural mechanics are discussed. A constitutive modeling concept is employed whereby analytic relations between increments of contact surface stress (i.e., traction) and contact surface deformation (i.e., relative displacement) are developed. Because of the incremental form of these relations, they are valid for arbitrary load-deformation histories. The motivation for the development of such a constitutive law is that more realistic friction idealizations can be implemented in finite element analysis software in a consistent, straightforward manner. Of particular interest is modeling of two-body (i.e., unlubricated) metal-metal, ceramic-ceramic, and metal-ceramic contact. Interfaces involving ceramics are of engineering importance and are being considered for advanced turbine engines in which higher temperature materials offer potential for higher engine fuel efficiency
Application of traction drives as servo mechanisms
The suitability of traction drives for a wide class of aerospace control mechanisms is examined. Potential applications include antenna or solar array drive positioners, robotic joints, control moment gyro (CMG) actuators and propeller pitch change mechanisms. In these and similar applications the zero backlash, high torsional stiffness, low hysteresis and torque ripple characteristics of traction drives are of particular interest, as is the ability to run without liquid lubrication in certain cases. Wear and fatigue considerations for wet and dry operation are examined along with the tribological performance of several promising self lubricating polymers for traction contracts. The speed regulation capabilities of variable ratio traction drives are reviewed. A torsional stiffness analysis described suggests that traction contacts are relatively stiff compared to gears and are significantly stiffer than the other structural elements in the prototype CMG traction drive analyzed. Discussion is also given of an advanced turboprop propeller pitch change mechanism that incorporates a traction drive
HSR Overview
The leading Aeronautics program within NASA is the High Speed Research Program (HSR). The HSR program's highest priorities are high pay-off technologies for airframe and propulsion systems required for a high speed civil transport (HSCT). These priorities have been developed collaboratively with NASA, FAA and the US Industry (Boeing-McDonnell Douglas, Pratt & Whitney and General Electric). Phase one of the HSR program started on 1990, and concentrated on the environmental challenges of minimizing NOx and noise. The first program goal is to reduce the NOx emission index to less than 5 (Concord NOx index is 20 and is unacceptable), in order to have little impact on the earth's ozone layer. The second goal is to reduce noise levels to FAR Stage 3 (or better), comparable to those of subsonic aircraft (far below the Concorde noise levels that require exemptions form less stringent standards). This requirement greatly impacts the nozzle design increasing its length and complexity and poses unique sealing challenges. Phase two started in 1993 and initiated work on the technologies required for an economical HSCT. Materials technologies under development include a ceramic-matrix-composite combustion liner, lightweight materials for the nozzle, as well long-life turbomachinery disk and blade alloys. Other required materials are being developed under the DOD-IHPTET program, where there is close cooperation. Economic goals translate into the development of technologies for tri-class service, 5000 nautical mile range aircraft with a ticket price no more than 20% over the subsonic ticket price. The potential market could be as large as 1500 aircraft, according to a Boeing study. Technology alone will not enable this airplane, yet without enabling technologies "on the shelf", it will not occur. The HSCT engine will be the largest engine ever built and operate at maximum conditions for long periods of time posing a number of challenges. The HSR engine mission requires that rotating equipment stay at take-off condition temperatures for hours not minutes per flight. Hence rotating equipment and seals must operate for many thousands of hours at extreme temperatures. It is anticipated that the nozzle will be 12 feet long and roughly 4 ft. by 5 ft. in cross-section with a nominal airflow of 800 lbs/sec. The complex function of the nozzle (including an ejector for noise attenuation) combined with long life place new demands on nozzle seal design. Three inlet configurations are under consideration with attendant sealing challenges, as will be illustrated herein. Four of these engines are required to propel a 5000 nautical mile class vehicle which demand that component reliability be at the highest possible level. In response, an HSR seals session was implemented as a part of the 1997-Seals and Secondary Flow Workshop. Overview presentations were given for each of the following areas: inlet, turbomachinery, combustor and nozzle. The HSCT seal issues center on durability and efficiency of rotating equipment seals (including brush seals), structural seals (including rope seals and other advanced concepts), and high-speed bearing and sump seals. Tighter clearances, propulsion system size and thermal requirements represent extremes that challenge the component designers. This document provides an initial step toward defining HSR seal needs. The overview for HSR seal designs includes, defining seal objectives, summarizing sealing and materials requirements, presenting relevant seal cross-sections, and identifying technology needs for the HSR office
Numerical Simulation of Flow in a Whirling Annular Seal and Comparison with Experiments
The turbulent flow field in a simulated annular seal with a large clearance/radius ratio (0.015) and a whirling rotor was simulated using an advanced 3D CFD code SCISEAL. A circular whirl orbit with synchronous whirl was imposed on the rotor center. The flow field was rendered quasi-steady by making a transformation to a totaling frame. Standard k-epsilon model with wall functions was used to treat the turbulence. Experimentally measured values of flow parameters were used to specify the seal inlet and exit boundary conditions. The computed flow-field in terms of the velocity and pressure is compared with the experimental measurements inside the seal. The agreement between the numerical results and experimental data with correction is fair to good. The capability of current advanced CFD methodology to analyze this complex flow field is demonstrated. The methodology can also be extended to other whirl frequencies. Half- (or sub-) synchronous (fluid film unstable motion) and synchronous (rotor centrifugal force unbalance) whirls are the most unstable whirl modes in turbomachinery seals, and the flow code capability of simulating the flows in steady as well as whirling seals will prove to be extremely useful in the design, analyses, and performance predictions of annular as well as other types of seals
Static and Dynamic Friction Behavior of Candidate High Temperature Airframe Seal Materials
The following report describes a series of research tests to evaluate candidate high temperature materials for static to moderately dynamic hypersonic airframe seals. Pin-on-disk reciprocating sliding tests were conducted from 25 to 843 C in air and hydrogen containing inert atmospheres. Friction, both dynamic and static, was monitored and serves as the primary test measurement. In general, soft coatings lead to excessive static friction and temperature affected friction in air environments only
An advanced pitch change mechanism incorporating a hybrid traction drive
A design of a propeller pitch control mechanism is described that meets the demanding requirements of a high-power, advanced turboprop. In this application, blade twisting moment torque can be comparable to that of the main reduction gearbox output: precise pitch control, reliability and compactness are all at a premium. A key element in the design is a compact, high-ratio hybrid traction drive which offers low torque ripple and high torsional stiffness. The traction drive couples a high speed electric motor/alternator unit to a ball screw that actuates the blade control links. The technical merits of this arrangement and the performance characteristics of the traction drive are discussed. Comparisons are made to the more conventional pitch control mechanisms
Numerical Analysis of Intra-Cavity and Power-Stream Flow Interaction in Multiple Gas-Turbine Disk-Cavities
A numerical analysis methodology and solutions of the interaction between the power stream and multiply-connected multi-cavity sealed secondary flow fields are presented. Flow solutions for a multi-cavity experimental rig were computed and compared with experimental data of Daniels and Johnson. The flow solutions illustrate the complex coupling between the main-path and the cavity flows as well as outline the flow thread that exists throughout the subplatform multiple cavities and seals. The analysis also shows that the de-coupled solutions on single cavities is inadequate. The present results show trends similar to the T-700 engine data that suggests the changes in the CDP seal altered the flow fields throughout the engine and affected the engine performance
Rotating Brush Seal
The proven technology of brush seals has been extended to the mitigation of problems arising from friction and wear at the bristle-rotor interface at high surface speeds. In prototype testing, the brush is mounted on, and free to rotate with the shaft, thus providing a complaint primary seal. A face seal positioned between the backing plate of the brush seal and the housing provides a secondary seal. The purpose of this paper is to demonstrate the interaction between the brush bristles and the shaft at high surface speeds as well as introduce a numerical model to simulate the bristle behavior. A test facility was constructed to study the effects of centrifugal forces on bristle deflection in a single rotating brush seal. The bristle-rotor interface was observed through a video camera, which utilized a high magnification borescope and a high frequency strobe light source. Rotational speeds of the rotor and the brush seal were measured by a magnetic and optical speed sensor, respectively. Preliminary results with speeds up to 11,000 rpm show no speed differential between the brush seal and rotor, or any instability problems associated with the brush seal. Bristle liftoff from the rotor is successfully captured on video
Sealing in Turbomachinery
Clearance control is of paramount importance to turbomachinery designers and is required to meet today's aggressive power output, efficiency, and operational life goals. Excessive clearances lead to losses in cycle efficiency, flow instabilities, and hot gas ingestion into disk cavities. Insufficient clearances limit coolant flows and cause interface rubbing, overheating downstream components and damaging interfaces, thus limiting component life. Designers have put renewed attention on clearance control, as it is often the most cost effective method to enhance system performance. Advanced concepts and proper material selection continue to play important roles in maintaining interface clearances to enable the system to meet design goals. This work presents an overview of turbomachinery sealing to control clearances. Areas covered include: characteristics of gas and steam turbine sealing applications and environments, benefits of sealing, types of standard static and dynamics seals, advanced seal designs, as well as life and limitations issues
Evaluation of an Active Clearance Control System Concept
Reducing blade tip clearances through active tip clearance control in the high pressure turbine can lead to significant reductions in emissions and specific fuel consumption as well as dramatic improvements in operating efficiency and increased service life. Current engines employ scheduled cooling of the outer case flanges to reduce high pressure turbine tip clearances during cruise conditions. These systems have relatively slow response and do not use clearance measurement, thereby forcing cold build clearances to set the minimum clearances at extreme operating conditions (e.g., takeoff, reburst) and not allowing cruise clearances to be minimized due to the possibility of throttle transients (e.g., step change in altitude). In an effort to improve upon current thermal methods, a first generation mechanically-actuated active clearance control (ACC) system has been designed and fabricated. The system utilizes independent actuators, a segmented shroud structure, and clearance measurement feedback to provide fast and precise active clearance control throughout engine operation. Ambient temperature performance tests of this first generation ACC system assessed individual seal component leakage rates and both static and dynamic overall system leakage rates. The ability of the nine electric stepper motors to control the position of the seal carriers in both open- and closed-loop control modes for single and multiple cycles was investigated. The ability of the system to follow simulated engine clearance transients in closed-loop mode showed the system was able to track clearances to within a tight tolerance (0.001 in. error)
- …