85 research outputs found

    Structure of the Balmer jump. The isolated hydrogen atom

    Full text link
    Context. The spectrum of the hydrogen atom was explained by Bohr more than one century ago. We revisit here some of the aspects of the underlying quantum structure, with a modern formalism, focusing on the limit of the Balmer series. Aims. We investigate the behaviour of the absorption coefficient of the isolated hydrogen atom in the neighbourhood of the Balmer limit. Methods. We analytically computed the total cross-section arising from bound-bound and bound-free transitions in the isolated hydrogen atom at the Balmer limit, and established a simplified semi-analytical model for the surroundings of that limit. We worked within the framework of the formalism of Landi Degl'Innocenti & Landolfi (2004, Astrophys. Space Sci. Lib., 307), which permits an almost straight-forward generalization of our results to other atoms and molecules, and which is perfectly suitable for including polarization phenomena in the problem. Results. We analytically show that there is no discontinuity at the Balmer limit, even though the concept of a "Balmer jump" is still meaningful. Furthermore, we give a possible definition of the location of the Balmer jump, and we check that this location is dependent on the broadening mechanisms. At the Balmer limit, we compute the cross-section in a fully analytical way. Conclusions. The Balmer jump is produced by a rapid drop of the total Balmer cross-section, yet this variation is smooth and continuous when both bound-bound and bound-free processes are taken into account, and its shape and location is dependent on the broadening mechanisms

    An innovative and automated method for vortex identification. I. Description of the SWIRL algorithm

    Get PDF
    Context. A universally accepted definition of what a vortex is has not yet been reached. Therefore, we lack an unambiguous and rigorous method for the identification of vortices in fluid flows. Such a method would be necessary to conduct robust statistical studies on vortices in highly dynamical and turbulent systems, such as the solar atmosphere. Aims. We aim to develop an innovative and robust automated methodology for the identification of vortices based on local and global characteristics of the flow. Moreover, the use of a threshold that could potentially prevent the detection of weak vortices in the identification process should be avoided. Methods. We present a new method that combines the rigor of mathematical criteria with the global perspective of morphological techniques. The core of the method consists in the estimation of the center of rotation for every point of the flow that presents some degree of curvature in its neighborhood. For that, we employ the Rortex criterion and combine it with morphological considerations of the velocity field. We then identify coherent vortical structures by clusters of estimated centers of rotation. Results. We demonstrate that the Rortex is a more reliable criterion than are the swirling strength and the vorticity for the extraction of physical information from vortical flows, because it measures the rigid-body rotational part of the flow alone and is not biased by the presence of pure or intrinsic shears. We show that the method performs well on a simplistic test case composed of two Lamb-Oseen vortices. We combine the proposed method with a state of the art clustering algorithm to build an automated vortex identification algorithm. (Abridged)Comment: 14 pages, 12 figures, accepted for publication in A&

    The Alfv\'enic nature of chromospheric swirls

    Full text link
    We investigate the evolution and origin of small-scale chromospheric swirls by analyzing numerical simulations of the quiet solar atmosphere, using the radiative magnetohydrodynamic code CO55BOLD. We are interested in finding their relation with magnetic field perturbations and in the processes driving their evolution. For the analysis, the swirling strength criterion and its evolution equation are applied in order to identify vortical motions and to study their dynamics. We introduce a new criterion, the magnetic swirling strength, which allows us to recognize torsional perturbations in the magnetic field. We find a strong correlation between swirling strength and magnetic swirling strength, in particular in intense magnetic flux concentrations, which suggests a tight relation between vortical motions and torsional magnetic field perturbations. Furthermore, we find that swirls propagate upward with the local Alfv\'en speed as unidirectional swirls, in the form of pulses, driven by magnetic tension forces alone. In the photosphere and low chromosphere, the rotation of the plasma co-occurs with a twist in the upwardly directed magnetic field that is in the opposite direction of the plasma flow. All together, these are characteristics of torsional Alfv\'en waves. We also find indications of an imbalance between the hydrodynamic and magnetohydrodynamic baroclinic effects being at the origin of the swirls. At the base of the chromosphere, we find a net upwardly directed Poynting flux, which is mostly associated with large and complex swirling structures that we interpret as the superposition of various small-scale vortices. We conclude that the ubiquitous swirling events observed in simulations are tightly correlated with perturbations of the magnetic field. At photospheric and chromospheric levels, they form Alfv\'en pulses that propagate upward and may contribute to chromospheric heating.Comment: 23 pages, 18 figures, 1 movie, ready for the production stage in A&

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
    corecore