32 research outputs found

    Developmental Fluoxetine Exposure Normalizes the Long-Term Effects of Maternal Stress on Post-Operative Pain in Sprague-Dawley Rat Offspring

    Get PDF
    Early life events can significantly alter the development of the nociceptive circuit. In fact, clinical work has shown that maternal adversity, in the form of depression, and concomitant selective serotonin reuptake inhibitor (SSRI) treatment influence nociception in infants. The combined effects of maternal adversity and SSRI exposure on offspring nociception may be due to their effects on the developing hypothalamic-pituitary-adrenal (HPA) system. Therefore, the present study investigated long-term effects of maternal adversity and/or SSRI medication use on nociception of adult Sprague-Dawley rat offspring, taking into account involvement of the HPA system. Dams were subject to stress during gestation and were treated with fluoxetine (2×/5 mg/kg/day) prior to parturition and throughout lactation. Four groups of adult male offspring were used: 1. Control+Vehicle, 2. Control+Fluoxetine, 3. Prenatal Stress+Vehicle, 4. Prenatal Stress+Fluoxetine. Results show that post-operative pain, measured as hypersensitivity to mechanical stimuli after hind paw incision, was decreased in adult offspring subject to prenatal stress alone and increased in offspring developmentally exposed to fluoxetine alone. Moreover, post-operative pain was normalized in prenatally stressed offspring exposed to fluoxetine. This was paralleled by a decrease in corticosteroid binding globulin (CBG) levels in prenatally stressed offspring and a normalization of serum CBG levels in prenatally stressed offspring developmentally exposed to fluoxetine. Thus, developmental fluoxetine exposure normalizes the long-term effects of maternal adversity on post-operative pain in offspring and these effects may be due, in part, to the involvement of the HPA system

    Dissociable effects in reaction time performance after unilateral cerebral infarction: a comparison between the left and right frontal cortices in rats

    No full text
    Reaction time performance reflects the speed of information processing, both in humans and lower vertebrates like the rat. The present study compared reaction time performance in rats following unilateral infarction to the frontal cortex. The objective was to model cognitive impairment as it is seen in humans after stroke. Rats were trained in a reaction time paradigm, after which unilateral cortical infarction was induced photochemically. Reaction time performance was differentially affected after unilateral infarction to either the left or right frontal cortex, whereas sham operation did not result in a significant alteration in reactivity. An overall increase in reaction time of about 10% was present at 4 weeks after frontal infarction. In addition, a lateralized reaction time deficit occurred very early after right frontal infarction as an increase of 10-15% in trials directed towards the contralesional side. Additional analyses showed that these reaction time deficits can be explained differently: the former as a gradual and general decrease in the speed of information processing, whereas the latter shows specific impairment to initiate a contralateral motor response. The former matches well with the mental slowing observed in stroke patients, whereas the latter resembles a neglect phenomenon. We conclude that measuring reaction time performance after frontal cortical infarction in rats could offer a useful tool to model particular human cognitive impairments following cerebral infarction

    Chlamydia pneumoniae infection enhances microglial activation in atherosclerotic mice.

    No full text
    Contains fulltext : 87253.pdf (publisher's version ) (Closed access)The presence of Chlamydia pneumoniae in murine brain tissue was studied in atherosclerotic and non-atherosclerotic mice, after peritoneal injection. Furthermore, we investigated whether increased permeability of the blood-brain barrier was implicated in cerebral C. pneumoniae infection and whether intra-cerebral C. pneumoniae infection leads to microglial activation. Using a polymerase chain reaction, C. pneumoniae DNA was found in the brain tissue of 33% of the mice, 3, 7 and 21 days after infection. Atherosclerosis and age does not influence the extend of the cerebral infection. Semiquantitative analyses showed that intra-cerebral C. pneumoniae infection was not accompanied by an altered function of the blood-brain barrier. Microglial activation was assessed with immunohistochemistry, quantified in the hippocampus of each infected mouse and compared with mock infected. Enhanced microglial activation was found in the atherosclerotic mice. Since microglial activation is a key factor in a number of neuroinflammatory diseases, C. pneumoniae infection might play a role in these diseases.1 oktober 201

    Gestational stress and fluoxetine treatment differentially affect plasticity, methylation and serotonin levels in the PFC and hippocampus of rat dams

    No full text
    Women are more likely to develop depression during childbearing years with up to 20% of women suffering from depression during pregnancy and in the postpartum period. Increased prevalence of depression during the perinatal period has resulted in frequent selective serotonin reuptake inhibitor (SSRI) antidepressant treatment; however the effects of such medications on the maternal brain remain limited. Therefore, the aim of the present study is to investigate the effects of the SSRI medication, fluoxetine, on neurobiological differences in the maternal brain. To model aspects of maternal depression, gestational stress was used. Sprague-Dawley rat dams were exposed to either gestational stress and/or fluoxetine (5 mg/kg/day) to form the following four groups: 1. Control + Vehicle, 2. Stress + Vehicle, 3. Control + Fluoxetine, and 4. Stress + Fluoxetine. At weaning maternal brains were collected. Main findings show that gestational stress alone increased synaptophysin and serotonin metabolism in the cingulate cortex2 region of the cortex while fluoxetine treatment after stress normalized these effects. In the hippocampus, fluoxetine treatment, regardless of gestational stress exposure, decreased both global measures of methylation in the dentate gyrus, as measured by Dnmt3a immunoreactivity, as well as serotonin metabolism. No further changes in synaptophysin, PSD-95, or Dnmt3a immunoreactivity were seen in the cortical or hippocampal areas investigated. These findings show that gestational stress and SSRI medication affect the neurobiology of the maternal brain in a region-specific manner. This work adds to a much needed area of research aimed at understanding neurobiological changes associated with maternal depression and the role of SSRI treatment in altering these changes in the female brain. © 2016 IBRO

    Protection of nigral cell death by bilateral subthalamic nucleus stimulation

    No full text
    In Parkinson disease (PD), the subthalamic nucleus (STN) becomes hyperactive (disinhibited), which is reported to cause excitotoxic damage to midbrain dopaminergic neurons. Here, we examined whether silencing of the hyperactive STN by chronic bilateral deep brain stimulation (DBS) increased the survival of midbrain dopaminergic neurons in a rat model of PD. High-precision design-based stereologic examination of the total number of neurons and tyrosine tydroxylase (TH) immunoreactive neurons in the substantia. nigra. pars compacta revealed that STN DBS resulted in a significant survival of these neurons. These data provide the first evidence in vivo that bilateral STN DBS is useful for protecting midbrain dopaminergic neurons from cell death in PD

    Facilitating effects of exercise on information processing

    No full text
    Loss of protein quality control by the ubiquitin-proteasome system (UPS) during aging is one of the processes putatively contributing to cellular stress and Alzheimer's disease (AD) pathogenesis. Recently, pooled Genome Wide Association Studies (GWAS), pathway analysis and proteomics identified protein ubiquitination as one of the key modulators of AD. Mutations in ubiquitin B mRNA that result in UBB(+1) dose-dependently cause an impaired UPS, subsequent accumulation of UBB(+1) and most probably depositions of other aberrant proteins present in plaques and neurofibrillary tangles. We used specific immunohistochemical probes for a comprehensive topographic mapping of the UBB(+1) distribution in the brains of transgenic mouse line 3413 overexpressing UBB(+1). We also mapped the expression of UBB(+1) in brain areas of AD patients selected based upon the distribution of UBB(+1) in line 3413. Therefore, we focused on the olfactory bulb, basal ganglia, nucleus basalis of Meynert, inferior colliculus and raphe nuclei. UBB(+1) distribution was compared with established probes for pre-tangles and tangles and Abeta plaques. UBB(+1) distribution found in line 3413 is partly mirrored in the AD brain. Specifically, nuclei with substantial accumulations of tangle-bearing neurons, such as the nucleus basalis of Meynert and raphe nuclei also present high densities of UBB(+1) positive tangles. Line 3413 is useful for studying the contribution of proteasomal dysfunction in AD. The findings are consistent with evidence that areas outside the forebrain are also affected in AD. Line 3413 may also be predictive for other conformational diseases, including related tauopathies and polyglutamine diseases, in which UBB(+1) accumulates in their cellular hallmarks
    corecore