903 research outputs found

    Prediction of activity related energy expenditure using accelerometer derived physical activity under free-living conditions-a systematic review

    Get PDF
    BACKGROUND: Activity related energy expenditure (AEE) might be an important factor in the etiology of chronic diseases. However, measurement of free-living AEE is usually not feasible in large scale epidemiological studies but instead has traditionally been estimated based on self-reported physical activity. Recently, accelerometry has been proposed for objective assessment of physical activity, but it is unclear to what extent this methods explains the variance in AEE. METHODS: We conducted a systematic review searching MEDLINE database (until 2014) on studies that estimated AEE based on accelerometry-assessed physical activity in adults under free-living conditions (using doubly-labeled water method). Extracted study characteristics: sample size, accelerometer (type [uniaxial, triaxial], metrics [e.g. activity counts, steps, acceleration], recording period, body position, wear time), explained variance of AEE (R2), number of additional predictors. The relation of univariate and multivariate R2 with study characteristics was analyzed using non-parametric tests. RESULTS: Nineteen articles were identified. Examination of various accelerometers or subpopulations in one article was treated separately, resulting in 28 studies. Sample sizes ranged from 10-149. In most studies the accelerometer was triaxial, worn at the trunk, during waking hours, and reported activity counts as output metric. Recording periods ranged from 5-15 days. The variance of AEE explained by accelerometer assessed physical activity ranged from 4-80% (median crude R2=26%). Sample size was inversely related to the explained variance. Inclusion of 1 to 3 other predictors in addition to accelerometer output significantly increased the explained variance to a range of 12.5-86% (median total R2=41%). The increase did not depend on the number of added predictors. CONCLUSIONS: We conclude that there is large heterogeneity across studies in the explained variance of AEE when estimated based on accelerometry. Thus, data on predicted AEE based on accelerometry assessed physical activity need to be interpreted cautiously

    A Comprehensive Emission Inventory of Bbiogenic Volatile Organic Compounds in Europe: Improved Seasonality and Land-cover

    Get PDF
    Biogenic volatile organic compounds (BVOC) emitted from vegetation are important for the formation of secondary pollutants such as ozone and secondary organic aerosols (SOA) in the atmosphere. Therefore, BVOC emission are an important input for air quality models. To model these emissions with high spatial resolution, the accuracy of the underlying vegetation inventory is crucial. We present a BVOC emission model that accommodates different vegetation inventories and uses satellite-based measurements of greenness instead of pre-defined vegetation periods. This approach to seasonality implicitly treats effects caused by water or nutrient availability, altitude and latitude on a plant stand. Additionally, we test the influence of proposed seasonal variability in enzyme activity on BVOC emissions. In its present setup, the emission model calculates hourly emissions of isoprene, monoterpenes, sesquiterpenes and the oxygenated volatile organic compounds (OVOC) methanol, formaldehyde, formic acid, ethanol, acetaldehyde, acetone and acetic acid. In this study, emissions based on three different vegetation inventories are compared with each other and diurnal and seasonal variations in Europe are investigated for the year 2006. Two of these vegetation inventories require information on tree-cover as an input. We compare three different land-cover inventories (USGS GLCC, GLC2000 and Globcover 2.2) with respect to tree-cover. The often-used USGS GLCC land-cover inventory leads to a severe reduction of BVOC emissions due to a potential miss-attribution of broad-leaved trees and reduced tree-cover compared to the two other land-cover inventories. To account for uncertainties in the land-cover classification, we introduce land-cover correction factors for each relevant land-use category to adjust the tree-cover. The results are very sensitive to these factors within the plausible range. For June 2006, total monthly BVOC emissions decreased up to −27% with minimal and increased up to +71% with maximal factors, while in January 2006, the changes in monthly BVOC emissions were −54 and +56% with minimal and maximal factors, respectively. The new seasonality approach leads to a reduction in the annual emissions compared with non-adjusted data. The strongest reduction occurs in OVOC (up to −32 %), the weakest in isoprene (as little as −19 %). If also enzyme seasonality is taken into account, however, isoprene reacts with the steepest decrease of annual emissions, which are reduced by −44% to −49 %, annual emissions of monoterpenes reduce between −30 and −35 %. The sensitivity of the model to changes in temperature depends on the climatic zone but not on the vegetation inventory. The sensitivity is higher for temperature increases of 3K (+31% to +64 %) than decreases by the same amount (−20 to −35 %). The climatic zones “Cold except summer” and “arid” are most sensitive to temperature changes in January for isoprene and monoterpenes, respectively, while in June, “polar” is most sensitive to temperature for both isoprene and monoterpenes. Our model predicts the oxygenated volatile organic compounds to be the most abundant fraction of the annual European emissions (3571–5328 Gg yr−1), followed by monoterpenes (2964–4124 Gg yr−1), isoprene (1450–2650 Gg yr−1) and sesquiterpenes (150–257 Gg yr−1). We find regions with high isoprene emissions (most notably the Iberian Peninsula), but overall, oxygenated VOC dominate with 43–45% (depending on the vegetation inventory) contribution to the total annual BVOC emissions in Europe. Isoprene contributes between 18–21 %, monoterpenes 33–36% and sesquiterpenes contribute 1–2 %.We compare the concentrations of biogenic species simulated by an air quality model with measurements of isoprene and monoterpenes in Hohenpeissenberg (Germany) for both summer and winter. The agreement between observed and modelled concentrations is better in summer than in winter. This can partly be explained with the difficulty to model weather conditions in winter accurately, but also with the increased anthropogenic influence on the concentrations of BVOC compounds in winter. Our results suggest that land-cover inventories used to derive tree-cover must be chosen with care. Also, uncertainties in the classification of land-cover pixels must be taken into account and remain high. This problem must be addressed together with the remote sensing community. Our new approach using a greenness index for addressing seasonality of vegetation can be implemented easily in existing models. The importance of OVOC for air quality should be more deeply addressed by future studies, especially in smog chambers. Also, the fate of BVOC from the dominant region of the Iberian Peninsula should be studied more in detail

    3D Hydrophobic Moment Vectors as a Tool to Characterize the Surface Polarity of Amphiphilic Peptides

    Get PDF
    AbstractThe interaction of membranes with peptides and proteins is largely determined by their amphiphilic character. Hydrophobic moments of helical segments are commonly derived from their two-dimensional helical wheel projections, and the same is true for β-sheets. However, to the best of our knowledge, there exists no method to describe structures in three dimensions or molecules with irregular shape. Here, we define the hydrophobic moment of a molecule as a vector in three dimensions by evaluating the surface distribution of all hydrophilic and lipophilic regions over any given shape. The electrostatic potential on the molecular surface is calculated based on the atomic point charges. The resulting hydrophobic moment vector is specific for the instantaneous conformation, and it takes into account all structural characteristics of the molecule, e.g., partial unfolding, bending, and side-chain torsion angles. Extended all-atom molecular dynamics simulations are then used to calculate the equilibrium hydrophobic moments for two antimicrobial peptides, gramicidin S and PGLa, under different conditions. We show that their effective hydrophobic moment vectors reflect the distribution of polar and nonpolar patches on the molecular surface and the calculated electrostatic surface potential. A comparison of simulations in solution and in lipid membranes shows how the peptides undergo internal conformational rearrangement upon binding to the bilayer surface. A good correlation with solid-state NMR data indicates that the hydrophobic moment vector can be used to predict the membrane binding geometry of peptides. This method is available as a web application on http://www.ibg.kit.edu/HM/

    Meeting Certification Requirements for Teacher Certification through the Basic Course

    Get PDF
    This article explains how one institution of higher education designed their basic course to include communication proficiency for teachers as an integral part of the course. Features of the course include the following standardized assessments: a 60-question multiple-choice exam to assess cognitive proficiency; a one-on-one interpersonal encounter to assess interpersonal proficiency; a speech to inform to assess public speaking proficiency; and the use of the Steinbrecher-Willmington Listening Test to assess listening

    The world calibration centre of VOC

    Get PDF

    Detection of pollution transport events southeast of Mexico City using ground-based visible spectroscopy measurements of nitrogen dioxide

    Get PDF
    This work presents ground based differential optical absorption spectroscopy (DOAS) measurements of nitrogen dioxide (NO<sub>2</sub>) during the MILAGRO field campaign in March 2006 at the Tenango del Aire research site located to the southeast of Mexico City. The DOAS NO<sub>2</sub> column density measurements are used in conjunction with ceilometer, meteorological and surface nitric oxide (NO), nitrogen oxides (NO<sub>x</sub>) and total reactive nitrogen (NO<sub>y</sub>) measurements to analyze pollution transport events to the southeast of Mexico City during the MILARGO field campaign. The study divides the data set into three case study pollution transport events that occurred at the Tenango del Aire research site. The unique data set is then used to provide an in depth analysis of example days of each of the pollution transport events. An in depth analysis of 13 March 2006, a Case One day, shows the transport of several air pollution plumes during the morning through the Tenango del Aire research site when southerly winds are present and demonstrates how DOAS tropospheric NO<sub>2</sub> vertical column densities (VCD), surface NO<sub>2</sub> mixing ratios and ceilometer data are used to determine the vertical homogeneity of the pollution layer. The analysis of 18 March 2006, a Case Two day, shows that when northerly winds are present for the entire day, the air at the Tenango del Aire research site is relatively clean and no major pollution plumes are detected. Case 3 days are characterized by relatively clean air throughout the morning with large DOAS NO<sub>2</sub> enhancements detected in the afternoon. The analysis of 28 March 2006 show the DOAS NO<sub>2</sub> enhancements are likely due to lightning activity and demonstrate how suitable ground-based DOAS measruements are for monitoring anthropogenic and natural pollution sources that reside above the mixing layer

    Conserved Charge Fluctuations from Lattice QCD and the Beam Energy Scan

    Full text link
    We discuss the next-to-leading order Taylor expansion of ratios of cumulants of net-baryon number fluctuations. We focus on the relation between the skewness ratio, SBσB=χ3B/χ1BS_B\sigma_B = \chi_3^B/\chi_1^B, and the kurtosis ratio, κBσB2=χ4B/χ2B\kappa_B\sigma_B^2 =\chi_4^B/\chi_2^B. We show that differences in these two cumulant ratios are small for small values of the baryon chemical potential. The next-to-leading order correction to κBσB2\kappa_B\sigma_B^2 however is approximately three times larger than that for SBσBS_B\sigma_B. The former thus drops much more rapidly with increasing beam energy, sNN\sqrt{s_{NN}}. We argue that these generic patterns are consistent with current data on cumulants of net-proton number fluctuations measured by the STAR Collaboration at sNN19.6\sqrt{s_{NN}}\ge 19.6~GeV.Comment: 4 pages, 4 figures, contribution to the Quark Matter 2015 proceeding

    Association of body surface scanner-based abdominal volume with parameters of the Metabolic Syndrome and comparison with manually measured waist circumference

    Get PDF
    To investigate abdominal volume determined by a new body scanner algorithm as anthropometric marker for Metabolic Syndrome (MetS) and its parameters compared to manually measured waist circumference (WC), we performed body scans in 411 participants (38% men, 20-81 years). WC and triglyceride, HDL-cholesterol, and fasting glucose concentrations, and blood pressure were assessed as MetS parameters. We used Spearman correlations and linear regression to investigate associations and goodness-of-fit (R(2), BIC) of abdominal volume and WC with MetS parameters, and logistic regression to analyse the discriminative power of WC and abdominal volume to assess likelihoods of MetS components and MetS. Correlations with triglyceride, HDL-cholesterol, and glucose concentration were slightly stronger for abdominal volume (r; 0.32, −0.32, and 0.34, respectively) than for WC (0.28, −0.28, and 0.29, respectively). Explained variances in MetS parameters were slightly higher and goodness-of-fit slightly better for abdominal volume than for WC, but differences were small. Exemplarily, glucose levels were 0.28 mmol/L higher (R² = 0.25; BIC = 945.5) per 1-SD higher WC, and 0.35 mmol/L higher (R² = 0.28; BIC = 929.1) per 1-SD higher abdominal volume. The discriminative power to estimate MetS components was similar for WC and abdominal volume. Our data show that abdominal volume allows metabolic characterization comparable to established WC

    Validity and reliability of total body volume and relative body fat mass from a 3-dimensional photonic body surface scanner

    Get PDF
    OBJECTIVE: Three-dimensional photonic body surface scanners (3DPS) feature a tool to estimate total body volume (BV) from 3D images of the human body, from which the relative body fat mass (%BF) can be calculated. However, information on validity and reliability of these measurements for application in epidemiological studies is limited. METHODS: Validity was assessed among 32 participants (men, 50%) aged 20-58 years. BV and %BF were assessed using a 3DPS (VitusSmart XXL) and air displacement plethysmography (ADP) with a BOD POD(R) device using equations by Siri and Brozek. Three scans were obtained per participant (standard, relaxed, exhaled scan). Validity was evaluated based on the agreement of 3DPS with ADP using Bland Altman plots, correlation analysis and Wilcoxon signed ranks test for paired samples. Reliability was investigated in a separate sample of 18 participants (men, 67%) aged 25-66 years using intraclass correlation coefficients (ICC) based on two repeated 3DPS measurements four weeks apart. RESULTS: Mean BV and %BF were higher using 3DPS compared to ADP, (3DPS-ADP BV difference 1.1 +/- 0.9 L, p<0.01; %BF difference 7.0 +/- 5.6, p<0.01), yet the disagreement was not associated with gender, age or body mass index (BMI). Reliability was excellent for 3DPS BV (ICC, 0.998) and good for 3DPS %BF (ICC, 0.982). Results were similar for the standard scan and the relaxed scan but somewhat weaker for the exhaled scan. CONCLUSIONS: Although BV and %BF are higher than ADP measurements, our data indicate good validity and reliability for an application of 3DPS in epidemiological studies
    corecore