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Berlin, Germany, 4 DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin,

Germany

☯ These authors contributed equally to this work.

‡ These authors also contributed equally to this work.

* tobias.pischon@mdc-berlin.de

Abstract

Objective

Three-dimensional photonic body surface scanners (3DPS) feature a tool to estimate total

body volume (BV) from 3D images of the human body, from which the relative body fat

mass (%BF) can be calculated. However, information on validity and reliability of these mea-

surements for application in epidemiological studies is limited.

Methods

Validity was assessed among 32 participants (men, 50%) aged 20–58 years. BV and %BF

were assessed using a 3DPS (VitusSmart XXL) and air displacement plethysmography

(ADP) with a BOD POD® device using equations by Siri and Brozek. Three scans were

obtained per participant (standard, relaxed, exhaled scan). Validity was evaluated based on

the agreement of 3DPS with ADP using Bland Altman plots, correlation analysis and Wil-

coxon signed ranks test for paired samples. Reliability was investigated in a separate sam-

ple of 18 participants (men, 67%) aged 25–66 years using intraclass correlation coefficients

(ICC) based on two repeated 3DPS measurements four weeks apart.

Results

Mean BV and %BF were higher using 3DPS compared to ADP, (3DPS-ADP BV difference

1.1 ± 0.9 L, p<0.01; %BF difference 7.0 ± 5.6, p<0.01), yet the disagreement was not associ-

ated with gender, age or body mass index (BMI). Reliability was excellent for 3DPS BV

(ICC, 0.998) and good for 3DPS %BF (ICC, 0.982). Results were similar for the standard

scan and the relaxed scan but somewhat weaker for the exhaled scan.
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Conclusions

Although BV and %BF are higher than ADP measurements, our data indicate good validity

and reliability for an application of 3DPS in epidemiological studies.

Introduction

Obesity is a major risk factor for non-communicable diseases like type-2-diabetes mellitus and

cardiovascular diseases, and accounts for a substantial proportion of disability-adjusted life

years and mortality worldwide [1].

The definition of obesity is based on the body mass index (BMI) [2, 3]; however, although

BMI is, to some extent, correlated with the amount of fat, it is neither a specific marker of

body fat nor a marker for abnormal fat accumulation. For example, for the same BMI older

adults tend to have a higher body fat percentage, and therefore health risk assessment using

BMI is less accurate in individuals >65 years of age [4]. Similarly, for the same BMI the per-

centage of body fat is usually higher among Asian people compared to Western populations

[5]. Yet, the assessment of body fat is challenging and most methods used today have potential

drawbacks. Air- and water displacement techniques, which are most widely used, rely on rigid

measurement conditions and even slight alterations in room temperature, humidity and pres-

sure during the measurement can lead to invalid results [6]; further, participants should not

have eaten or been physically active two hours prior to investigation. When using a bioelectri-

cal impedance analysis for assessing the body composition, similarly, participants should be

fasting for at least two hours and not be physically active for 12 hours [7]. Finally, dual energy

X-ray absorptiometry computed tomography and magnetic resonance imaging are expensive

and might constitute a risk for participants [8–11].

Three-dimensional photonic body surface scanners (3DPS) provide an opportunity for a

standardized acquirement of data on total body volume (BV). This is promising particularly

for large-scale epidemiological studies, where standardized, fast, accurate, and precise assess-

ment methods are key issues for a valid estimation of disease risk. In contrast to the abovemen-

tioned methods to assess the body composition, the 3DPS examination does not require the

participants to be in a fasting state or to restrict physical activity beforehand. In Germany,

measurement of body size has been recently conducted for the clothing industry in more than

13,000 individuals using a laser-based 3DPS (VitusSmart XXL, Human Solutions GmbH, Kai-

serslautern, Germany) [12]. Within 12 seconds, the 3DPS scans the body surface using four

eye-safe lasers, produces a 3D image, and calculates 153 body size measures relevant for the

clothing industry. We have recently shown that automated measurement of waist and hip cir-

cumference using this 3DPS is feasible and has good validity and excellent short-term reliabil-

ity as compared to manual measurement according to WHO standards [13]. However, validity

and reliability of measurement of total BV and body fat percentage (%BF) using 3DPS are

unclear. Knowing these is important since in the context of epidemiologic studies one usually

assesses risk factors like BV only once aiming to assess the ‘true’ exposure over longer time

periods, which is then used to draw exposure-disease associations, i.e., to what extent persons

with higher or lower BV differ with respect to chronic disease risk. Low within- or high

between-person variance between two measures will result in a high reliability [14], which is a

precondition to derive approximate true, unattenuated relative risks based on a single risk fac-

tor measurement in epidemiological studies [15].

The aim of this study was therefore to assess the validity of 3DPS total BV and %BF mea-

sures against air displacement plethysmography (ADP) measures and to identify factors
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potentially contributing to a measurement disagreement in the general adult population. Fur-

ther, as we have already shown a good short-term reliability of the 3DPS [13], we examined the

longer-term, and thus predominantly biological reliability of 3DPS total BV and %BF estimates

over a period of approximately four weeks to evaluate applicability of the 3DPS in epidemio-

logical studies.

Materials and methods

Study population

Participants were recruited from February 2016 to June 2016 as part of the larger-scaled

MetSScan study, which targeted a sample size of 500 participants and was conducted by the

Molecular Epidemiology Research Group of the Max Delbrück Center for Molecular Medicine

in the Helmholtz Association, Berlin. The MetSScan study aims to develop algorithms for the

assessment of parameters of the metabolic syndrome [16] using a 3DPS.

Participants for the main study were recruited based on institution’s internal mailing lists,

local press releases, newspaper articles, and advertisements as well as public postings. Inclusion

criteria were age 18–79 years, sufficient German language skills and the ability to give

informed consent. Exclusion criteria were current pregnancy or breastfeeding, known hemo-

philia, anticoagulant medication, dependency on medical appliances for stand and movement,

or current wearing of a plaster cast.

For assessment of validity of total BV measurements, ADP measurements were performed

on 32 participants in addition to the main study protocol. ADP measurements were not taken

in persons with claustrophobia.

To assess longer-term reliability (i.e., biological reliability) of BV and %BF, the 3DPS mea-

surements were repeated after approximately four weeks in an independent sample of 18 par-

ticipants under identical conditions.

The study was approved by the Ethics Committee of the Charité—Universitätsmedizin Ber-

lin and by the local data protection officer. Informed written consent was obtained from all

participants.

Measurements

All participants completed a study protocol at the study center comprising measurement of

height and weight, the 3DPS and ADP examination. Due to the original aim of the MetSScan

study, we needed a fasting blood sample to determine blood glucose. Thus participants were in

a fasting state for at least 8 hours prior to the investigation. All examinations were taken on the

same day with a maximum interval of one hour between the 3DPS and ADP measurements.

For all examinations, participants wore minimal, tight-fitting, unpadded underwear, no

jewelry or eyeglasses and a bathing cap. The measurement of body height followed standard-

ized procedures according to WHO guidelines [17] using a portable stadiometer (seca 285,

SECA GmbH & Co. KG, Hamburg, Germany, precision: 0.1 cm).

The 3DPS examination was performed with a VitusSmart XXL and the software Anthro-

scan Professional version 3.3.0 (Human Solutions GmbH, Kaiserslautern, Germany). The

measurement principle is based on optical triangulation, whereby the scanner uses eight eye-

safe laser sensor heads and cameras to create a 3D point cloud of the human body surface. The

measuring range covers 2100 mm height x 1000 mm width x 1200 mm depth. The accuracy is

within a level of ±1 mm and the scanner reaches a density of 27 points/cm2 within a scan time

of 10 seconds. Based on the 3D point cloud, 153 anthropometric measures are computed by

the software according to international standard DIN EN ISO 20685 [18]. Further, the calcula-

tion of total BV is part of the software.
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The study protocol for the 3DPS measurement consisted of three consecutive scans in three

different postures: 1. standard position: upright posture with legs shoulder-wide apart and, if

possible, no contact of thighs; arms slightly bend and away from the body; hands making a fist

with thumbs showing forward; and head positioned compliant with the Frankfort horizontal

plane (StdScan), 2. relaxed position: legs hip-wide apart, arms hanging relaxed without contact

to the body, hands making a fist, head aligned in Frankfort horizontal plane (RlxScan), and 3.

relaxed position after maximum expiration (ExhScan). Except for the ExhScan, participants

were asked to breathe normally during the scan procedure. All scan images were immediately

visually checked by the study personnel. A scan was repeated if the scan quality did not reach

pre-defined standards, e.g. with regard to image artifacts, deficient resolution, or if the posture

was not correct. The scan measurement series was cancelled in case the quality remained insuf-

ficient after three repeated attempts in the same individual. The 3DPS was calibrated prior to

the first examination of each day with a cylinder tube of defined height and width provided by

the manufacturer.

The assessment of BV by ADP was performed with a BOD POD1 (model number: BOD

POD 2007A, COSMED USA, Inc., Concord, USA), which shows high short-term reliability

[19–22], and followed the instructions given by the manufacturer’s software (version 5.4.1).

Hence, the BOD POD1 was calibrated each day with a 50 l calibration cylinder, allowing for a

maximum standard deviation (SD) of 50 ml in a series of five volume measurements. Body

weight was measured with an integrated electronic scale (precision: ±10 g, maximum weight:

250 kg) connected to the BOD POD1, which was calibrated every 14 days with two pre-speci-

fied 10 kg weights. Body height was taken from the above described stadiometer measurement.

Directly before each measurement, an obligate 2-step calibration was carried out: first, the vol-

ume of the chamber was measured without participant inside and then again with the 50 l cali-

bration cylinder placed inside. After the participant entered the chamber, two measurements

of raw BV were executed. If these two measurements differed by 150 ml or 0.2% of BV, a third

measurement was performed and the two closest measurements within these agreement crite-

ria were averaged. The estimate of raw BV was adjusted for thoracic gas volume (TGV) pre-

dicted from gender, age, and height by the software (8) and a body surface area artifact, which

arises due to the apparent negative volume of air under isothermal conditions related to the

skin surface [6]. Using the corrected BV (BVcorr), body density was calculated as:

Body density ¼
body mass ðkgÞ

BVcorrðLÞ
ð1Þ

which was subsequently used to calculate %BF with Siri’s equation in normal- and overweight

individuals (BMI 18.5–30.0 kg/m2) [23] or with Brozek’s equation in very lean or obese indi-

viduals (BMI<18.5 or>30.0 kg/m2) [24]:

Siri : %BF ¼
4:95

body density
� 4:50

� �

� 100 ð2Þ

Brozek : %BF ¼
4:57

body density
� 4:142

� �

� 100 ð3Þ

All calculations were automatically executed by the BOD POD1 software.

The 3DPS derived BV was corrected for TGV for the StdScan and RlxScan, and residual

volume (VR) for the ExhScan, respectively. TGV was calculated according to the following

equations by Brozek et al. [24] and Crapo et al. [25] based on functional residual capacity
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(FRC) and tidal volume (VT).

TGV ¼ FRC þ 0:5� VT ð4Þ

Men : FRC ¼ 0:0472� height þ 0:0090� age � 5:290; VT ¼ 1:2 ð5AÞ

Women : FRC ¼ 0:0360� height þ 0:0031� age � 3:182; VT ¼ 0:7 ð5BÞ

VR was calculated with equations developed by Crapo et al. [18]:

Men : VR ¼ 0:0216� height þ 0:0207� age � 2:840 ð6AÞ

Women : VR ¼ 0:0197� height þ 0:0201� age � 2:421 ð6BÞ

%BF was calculated for all corrected BVs of 3DPS scans using Eqs (2) and (3).

Statistical analysis

Data are presented as mean ± standard deviation (SD). BMI was calculated as body weight

in kilogram (kg) divided by body height in meter squared (m2) and was used to define non-

overweight (BMI < 25 kg/m2, including underweight), overweight (BMI�25 to <30 kg/m2)

and obesity (BMI�30 kg/m2) [26]. The comparison of 3DPS and ADP was performed after

correction of the 3DPS derived BV for TGV for the StdScan and RlxScan, or VR for the

ExhScan, respectively. The differences (3DPS–ADP) in BV and %BF were calculated and

stratified by gender, age, and BMI. The validity of 3DPS BV and %BF was assessed by analy-

sis of agreement using Pearson correlation coefficients and Bland Altman plots of the differ-

ence between BV assessed by 3DPS and ADP, or %BF respectively against the respective

mean [27, 28]. Q-Q plots were used to examine normal distribution of the 3DPS and ADP

BV and the BV differences between 3DPS and ADP [29]. Since BV and the BV differences

were not normally distributed, Wilcoxon signed ranks test for paired samples was used to

test for the significance of measurement differences between both methods. Further, the

sample was stratified by gender, age and BMI, the difference of BV or %BF between both

methods was calculated and the mean difference of the stratified samples was tested for sig-

nificance with the Mann–Whitney U test.

Multiple regression analyses were used to predict ADP BV based on 3DPS BV including

gender, age, BMI, and an interaction term of 3DPS BV�gender. The final models retained only

the significant factors after a stepwise exclusion procedure.

For the assessment of reliability, the differences in the duplicated 3DPS measurements (BV

and %BF), calculated as scan at date 1 –scan at date 2, and the intraclass correlation coefficients

(ICC) ± 95%CI were calculated.

P-values presented are 2-tailed and p<0.05 were considered statistically significant. The

analyses were performed using SPSS 18 (IBM Corporation, Armonk, USA) and SAS Enterprise

Guide 4.3. (SAS Institute Inc., Cary, USA).

Results

No technical issues or refusal of participants occurred during the completion of the study and

quality checks revealed formal plausibility of the data obtained. Basic characteristics of the two

subsamples including 32 and 18 participants are summarized in Table 1. All participants in

our study were of Caucasian origin.
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Validation of 3DPS against ADP

Fig 1A and 1B illustrate the agreement of BV from 3DPS StdScan and ADP based on correla-

tion analyses and Bland-Altman-Plots. Both measures were strongly correlated (R = 0.99, Fig

1A, Table 2). On average, ADP BV was 72.2 ± 12.4 L; the 3DPS BVs were slightly higher by

1.1 ± 0.9 L (p<0.001), 1.0 ± 0.8 L (p<0.001), and 2.5 ± 1.0 L (p<0.001), in standard, relaxed

and exhaled position, respectively (Table 2). There was no significant correlation of the mea-

surement difference between the two methods with their mean (Table 2). When stratified by

Table 1. Characteristics of the validation sample and the reliability sample.

validation sample reliability sample

N % N %

total 32 100 18 100

men 16 50 6 33.3

women 16 50 12 66.6

age

18–29 years 7 21.9 4 22.2

30–49 years 19 59.4 11 61.1

50–79 years 6 18.8 3 16.7

BMI

<25.0 18 56.3 11 61.1

25.0–29.9 11 34.4 5 27.8

> = 30.0 3 9.4 2 11.1

median interquartile range median interquartile range

height (cm) 172.0 10.8 168.6 14.3

weight (kg) 76.3 18.1 75.6 22.8

time interval between visits (weeks) - - 4.0 2.0

https://doi.org/10.1371/journal.pone.0180201.t001

Fig 1. Body volume measurement agreement between 3D photonic body surface standard scan and air-displacement plethysmography (N = 32).

(a) Body volume measured by 3DPS and ADP plotted on the regression line. Dashed line: line of identity (y = 1*x + 0). (b) Differences in body volume

measurements from 3DPS and ADP plotted against their mean. Solid line: mean measurement difference (3DPS–ADP), dashed lines: limits of agreement.

https://doi.org/10.1371/journal.pone.0180201.g001
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sex, BMI or age, the differences between 3DPS and ADP volume measurements were slightly,

albeit not significantly, higher in men (1.3 ± 1.0 L) than women (0.8 ± 0.7 L, p = 0.09), in non-

overweight (1.2 ± 0.8 L) compared to overweight individuals (0.8 ± 1.0 L, p = 0.23) and in par-

ticipants aged<30 years (1.2 ± 1.0 L) compared to>30 years (1.0 ± 0.8 L, p = 0.60).

For the comparison of %BF, one participant was excluded from the analysis due to invalidly

low %BF (<1% BF) given by ADP. %BF based on 3DPS StdScan and on ADP were highly

Table 2. Body volume and %body fat from 3D photonic body surface scans (3DPS) and air-displacement plethysmography (ADP) and measure-

ment differences between both methods.

ADP 3DPS difference 3DPS—

ADP

correlation 3DPS

with ADP

correlation difference

(3DPS-ADP) with mean

mean SD 95% CI scan

type

mean SD 95% CI mean SD 95% CI p R R

body volume (L)

72.2 12.4 (67.8–

76.7)

standard 73.3 12.4 (68.8;

77.7)

1.1 0.9 (0.7;1.4) < .001 0.998 -0.010

relaxed 73.2 12.3 (68.8;

77.6)

1.0 0.8 (0.7;1.3) < .001 0.998 -0.088

exhaled 74.7 12.5 (70.2;

79.2)

2.5 1.0 (2.2;2.9) < .001 0.997 0.097

%body fat (%)a

23.7 11.6 (19.4–

27.9)

standard 30.7 9.3 (27.3;

34.1)

7.0 5.6 (5.0;9.1) < .001 0.893 -0.431

relaxed 30.3 9.1 (26.9;

33.6)

6.6 5.3 (4.7;8.5) < .001 0.909 -0.488

exhaled 40.2 8.8 (37.0;

43.5)

16.6 6.5 (14.2;19.0) < .001 0.848 -0.481

a 1 case was excluded due to invalid %body fat.

https://doi.org/10.1371/journal.pone.0180201.t002

Fig 2. %Body fat measurement differences between 3D photonic body surface standard scan and air-displacement plethysmography (N = 31). (a)

%Body fat estimated from 3DPS and ADP plotted on the regression line. Dashed line: line of identity (y = 1*x + 0). (b) Differences in %body fat measurements

from 3DPS and ADP plotted against their mean. Solid line: mean measurement difference (3DPS–ADP), dashed lines: limits of agreement.

https://doi.org/10.1371/journal.pone.0180201.g002
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correlated (R = 0.89, Fig 2A, Table 2), but %BF based on 3DPS was on average higher by

7.0 ± 5.6% (p<0.001), 6.6 ± 5.3% (p<0.001) and 16.6 ± 6.5% (p<0.001) for StdScan, RlxScan,

and ExhScan (Table 2), respectively, as compared to a mean %BF from ADP of 23.7 ± 11.6%.

There was a moderate inverse correlation of the difference in %BF between 3DPS and ADP

with their mean (Table 2), indicating that with increasing body fat, the %BF difference between

ADP and 3DPS decreased (Table 2, Fig 2B). The difference between 3DPS StdScan and ADP

was again non-significantly higher in men (8.2 ± 6.4%) compared to women (5.8 ± 4.7%,

p = 0.25), higher in non-overweight (8.7 ± 5.0%) compared to overweight individuals

(5.0 ± 5.8%, p = 0.08), and higher in persons <30 years (8.5 ± 7:0%) compared to>30 years

(6.6 ± 5.2%, p = 0.50).

Regression analysis revealed no significant contribution of gender, age, BMI, or the interac-

tion of BV�gender for the prediction of ADP BV from 3DPS StdScan BV (Table 3). After step-

wise exclusion, the equation for calibration of the StdScan BV was:

StdScan BVcalibrated ¼ 0:998� StdScan BV � 0:928 ð7Þ

Similar results were found for the regression of ADP %BF from 3DPS StdScan %BF

(Table 3) with the following calibration equation after stepwise exclusion of aforementioned

potential contributors:

StdScan %BFcalibrated ¼ 1:106� StdScan %BF � 10:284 ð8Þ

Table 3. Linear regression models for the prediction of air-displacement plethysmography (ADP) measured body volume and %body fat on basis

of 3D photonic body surface (3DPS) standard scan.

regression coefficienta 95% CI standardized coefficient p R2

1a: Full model for the prediction of ADP body volume from 3DPS standard scan body volume (in L)

intercept -4.522 (-8.381; 0.663) 0.023 0.995

standard scan body volume 1.006 (0.930; 1.081) 1.005 < .001

BMI (kg/m2) 0.122 (-0.078; 0.323) 0.042 0.219

gender (male = 0, female = 1) 4.364 (-0.340; 9.067) 0.179 0.068

age (years) -0.159 (-0.688; 0.369) -0.008 0.540

gender*body volume -0.056 (-0.119; 0.008) -0.164 0.083

1b: Final model for the prediction of ADP body volume from 3DPS standard scan body volume (in L)

intercept -0.928 (-2.881; 1.026) 0.340 0.995

standard scan body volume 0.998 (0.972; 1.024) 0.998 < .001

2a: Full model for the prediction of ADP %body fat from 3DPS standard scan %body fat (in %)

intercept -29.979 (-50.530; 9.427) 0.006 0.806

standard scan %body fat 0.854 (0.462; 1.247) 0.690 < .001

BMI (kg/m2) 1.054 (0.124; 1.984) 0.368 0.028

gender (male = 0, female = 1) 22.246 (-3.458; 47.951) 0.934 0.087

age (years) -0.726 (-4.073; 2.621) -0.039 0.659

gender*%body fat -0.266 (-0.649; 0.117) -0.804 0.165

2b: Final model for the prediction of ADP %body fat from 3DPS standard scan %body fat (in %)

intercept -10.284 (-16.823; 3.744) 0.003 0.791

standard scan %body fat 1.106 (0.898; 1.313) 0.893 < .001

aFor the intercept the regression coefficient can be interpreted as a constant that is added to the regression (prediction) model. For the remaining variables,

the regression coefficient can be interpreted as the change in BV or the change in %BF per 1-unit change in the variables listed in the table.

https://doi.org/10.1371/journal.pone.0180201.t003
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Reliability of 3DPS

To assess reliability, the 3DPS measurement was repeated after four weeks. Reliability was high

for BV with a mean difference of 0.1 ± 1.3 L, 0.2 ± 1.3 L, and 0.2 ± 1.2 L for StdScan, RlxScan,

and ExhScan, respectively, and ICCs of>0.998 (Table 4). %BF based on StdScan had a mean

difference of -0.4 ± 2.4% and ICCs ranged from 0.945 to 0.983 (Table 4). The differences

between both 3DPS measurements were not statistically significantly different from zero.

Discussion

The aim of our study was to investigate validity and longer-term reliability of 3DPS based BV

and %BF over an approximately four weeks period for an application in epidemiological stud-

ies in the general adult population. Our study evaluating the validity of BV and %BF measure-

ments from 3DPS in comparison to measurements of APD showed a strong correlation of the

results from both methods, although our data also indicated that measurements derived by

3DPS were on average higher than those derived by ADP. Further, we found high reliability in

the measurement of BV and %BF using 3DPS over a period of four weeks. Of the three 3DPS

scans that we used, the scan in relaxed position showed the strongest agreement to ADP.

The measurement differences in BV found in our study are somewhat similar to what was

found in other validation studies for other 3DPS scanners using ADP or underwater weighing

(UWW) as reference methods. A study from Wells et al. with 22 adults using a Hamamatsu

Bodyline Scanner reported an underestimation of 0.3 ± 2.7 L against ADP and overestimation

of 0.5 ± 2.4 L for UWW, respectively [30]. Similarly, Wang et al. revealed an overestimation of

0.5 ± 0.1 L compared with UWW for an updated version of the Hamamatsu scanner in adult

men and women [31], whereas Pepper et al. found a mean difference of 0.2 L in middle-aged

women using a rotary laser scanning system developed by their research group [32]. In con-

trast, analyses from Ng et al. with a Fit3D Proscanner resulted in a 4.2 L (95% CI: −5.13; −3.17)

smaller BV measured by 3DPS compared to ADP [33]. Differences in the BV measurement

agreement between 3DPS and ADP among the different studies may have several reasons.

First, various body surface scanner models from different manufacturers were employed in

these studies, which vary regarding point density, scan time, the number of cameras and laser

used, and hardware components. Further, the scanning procedure proposed by the manufac-

turer differed between studies. Additionally, the scanner software is proprietary to the manu-

facturers and it remains unclear how the algorithm of a specific scanner model calculates BV

from the point cloud. Further, varying study populations could have contributed to differences

in the measurement agreement reported in the studies. Finally, different approaches for the

adjustment of BV based on 3DPS scans for lung volume were used. Lung volume was either

Table 4. Reliability of the 3D photonic body surface scanner.

scan type scan 1 scan 2 difference scan 1–2 reliability

mean SD mean SD mean SD p ICC 95% CI

body volume (L)

standard 71.7 16.0 71.6 15.5 0.1 1.3 0.75 0.998 (0.996; 0.999)

relaxed 71.7 16.0 71.5 15.3 0.2 1.3 0.52 0.998 (0.996; 0.999)

exhaled 73.2 16.1 73.0 15.6 0.2 1.2 0.49 0.999 (0.996; 0.999)

%body fat

standard 33.2 8.9 33.6 8.5 -0.4 2.4 0.49 0.982 (0.952; 0.993)

relaxed 32.8 8.9 32.6 8.6 0.2 2.3 0.72 0.983 (0.955; 0.994)

exhaled 43.2 7.9 42.9 7.2 0.3 3.5 0.72 0.945 (0.854; 0.980)

https://doi.org/10.1371/journal.pone.0180201.t004

Validity and reliability of a 3D photonic body surface scanner

PLOS ONE | https://doi.org/10.1371/journal.pone.0180201 July 3, 2017 9 / 14

https://doi.org/10.1371/journal.pone.0180201.t004
https://doi.org/10.1371/journal.pone.0180201


predicted from weight and height similarly to our approach [30], was measured by spirometry

[31], or no adjustment was made [32]. Thus, our results are not in accordance with the study

of Wang et al., which used spirometry to directly measure residual volume and subsequently

correct a scan after maximum expiration [31], since we found the highest discrepancy from

ADP for the scan after maximum expiration corrected for predicted residual volume. How-

ever, spirometry measurements probably give more valid estimates than the equation used in

our analysis. Moreover, in spirometry, the participants are instructed to breathe out as much

as possible necessarily with some effort. However, this was not practical during the 3DPS

examination, since it would have influenced the posture of the participants. Therefore some

expiratory reserve volume was probably retained in the lungs and accounted, in part, for the

high discrepancy of the 3DPS exhaled scan compared to ADP, if only the FRC was deducted

from 3DPS.

Taken together, the calculation rather than measurement of TGV (or residual volume)

could have resulted in discrepancies from actual TGV values on an individual level, for which

we could not account for. Though this similarly affected both ADP and 3DPS, the ongoing

approaches to adjust for TGV differed between methods, e.g. ADP BV was adjusted for 40% of

TGV, whereas it was completely deducted from 3DPS BV.

The 3DPS does not follow the standardized WHO measurement protocol for assessment of

height. In this regard, we previously showed that the VitusSmart XXL 3DPS overestimates

body height by on average 0.9 cm compared to manual measurements on basis of standardized

WHO guidelines [13]. However, this is unlikely to account for the differences in the measure-

ment of BV between 3DPS and ADP since we used manual height measurements following the

WHO protocol to calculate TGV in our analyses.

Furthermore, other factors independent of the scanner’s ability to validly estimate BV could

have contributed to the overestimation of BV. 3DPS visually scans the body surface and thus,

any body-enlarging object, like clothing and hair, amplifies BV. Even though this influence

was minimized by wearing tight-fitting underwear and a bathing cap, it could not be

completely eliminated, e.g. if the participant had a large hair volume, a beard, thick body hair,

or padded underwear. In addition, participants may have had the tendency to hold their breath

or breathe flatly during the scanning procedure in order to not blur the picture, which could

have led to a higher air volume in their lungs.

While we observed an acceptable difference between 3DPS and ADP for BV, the agreement

between methods found for %BF was lower. A non-zero intercept and non-identity slope in

the Bland Altman plots reflected the estimation of %BF on the basis of 3DPS BV to yield higher

values than estimation based on ADP. Similar graphical findings were also reported in a study

by Wang et al. using underwater weighing as comparison method to evaluate validity of 3DPS

based BV and %BF [34]. Bearing in mind that the regression lines of BV and %BF are indepen-

dent from each other, these differences may mainly be due to the fact that there is no linear

association between BV and %BF. This is attributable to the formulas used to derive %BF from

BV [23, 24], which include body density as ratio of body mass to BV, with BV being indirectly

assessed using 3DPS or ADP in our study (Eqs 2 and 3) [23, 24]. As a consequence, small devi-

ations in BV between 3DPS and ADP might result in proportionally pronounced deviations in

%BF. This sensitivity of Siri’s and Brozek’s formula to small differences in BV estimation is

well known [35]. In our study, we found a mean BV difference of 1.1 L for the StdScan to result

in a 7.0% higher mean %BF. Wells et al. found differences in %BF between 3DPS and ADP of

-2.6 ± 21.4% using a Hamamatsu Bodyline scanner [30] and Wang et al. found differences in

%BF of 0.7 ± 1.0% when another Hamamatsu scanner was used [31]. Pepper et al. yielded a

1.4% higher %BF for 3DPS than for ADP, but a 1.9% lower estimate against dual X-ray absorp-

tiometry [32]. In consequence, this could lead to misclassification regarding the allocation to
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normal or elevated %BF. In our study, 39% of the participants were differentially allocated to

normal vs. elevated %BF on the basis of ADP and 3DPS, meaning that they had normal %BF

based on ADP but elevated %BF based on 3DPS [36].

Furthermore, in contrast to BV, for %BF we found a correlation between the difference and

the mean of 3DPS and ADP measurements, with higher estimates based on 3DPS than for ADP

observed for lower %BF, while with increasing %BF the opposite was true. A similar depen-

dency of the difference between methods and the mean %BF was also found by Wang et al.

[34]. This skew in the comparison might be due to the fact that for persons with a BMI of<18.5

kg/m2 (as well as for persons with BMI>30.0 kg/m2) Brozek’s [24] instead of Siri’s formula is

used to derive %BF from BV [23]; using two different formulas might to some extent distort the

comparability along the entire %BF spectrum. However, the differences in %BF between 3DPS

and ADP were within the limits of agreement according to the Bland Altman plots.

In respect to the reliability of the 3DPS, it should be mentioned that a single assessment of a

biomarker, as has often been done in baseline examinations of large-scale epidemiological

studies, may be susceptible to short-term variation and not reflect true long-term exposure.

Therefore, random measurement error generally tends to decrease correlation and regression

coefficients in epidemiological studies toward 0 and bias relative risks toward 1. However, in

our analysis, the 3DPS scanner revealed an excellent reliability after a time period of four

weeks. To our knowledge, reliability over a longer-time period has not been analyzed previ-

ously; however, other studies with consecutive measurements showed very good short-term

reliability [13, 30–32]. These findings suggest that a single measurement of BV or %BF may be

sufficient for risk assessment in epidemiological studies. Furthermore, as a low reliability for a

risk factor measurement tend to attenuate exposure-disease associations, ICCs derived from

our study may also enable to deattenuate estimates of observed relative risks to approximate

true relative risks in cohort studies [15].

Our study has some strengths and limitations. ADP has been shown to be an accurate

method for assessment of BV, and it is probably the method that is most often used in experi-

mental studies [37–39]. However, ADP is based on the two-compartment model of body com-

position estimation, and it presumes a constant density of fat free mass, which is not always

appropriate, e.g. in old age or in athletes [40]. Hence, other methods like dual X-ray absorpti-

ometry or magnetic resonance imaging could give more valid %BF estimates and thus might be

the preferred ‘gold standard’ for 3DPS validation. The sample sizes of our validity and reliability

study were relatively small and did not aim to be representative of the general population; how-

ever, the distribution of characteristics of study participants was broad, and, therefore, our find-

ings should be applicable to populations with similar characteristics. Further, we found narrow

confidence intervals for validity with most p-values being highly significant; thus, our sample

sizes, although small, were adequate to produce conclusive results. Nevertheless, validity and

reliability in subjects with different phenotypes (e.g., diseased populations) need to be investi-

gated in future studies.

In conclusion, our study showed good agreement between 3DPS and ADP for measure-

ment of BV and %BF, although measurements were slightly higher for 3DPS compared to

ADP. Further, we found high ICCs for BV and %BF when measured with 3DPS four weeks

apart. These data indicate good validity and excellent four-week reliability for an application of

3DPS to assess BV and %BF in an epidemiological study.
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