73 research outputs found

    The reference frames of Mercury after MESSENGER

    Full text link
    We report on recent refinements and the current status for the rotational state models and the reference frame of the planet Mercury. We summarize the performed measurements of Mercury rotation based on terrestrial radar observations as well as data from the Mariner 10 and the MESSENGER missions. Further, we describe the different available definitions of reference systems for Mercury, which are realized using data obtained by instruments on board MESSENGER. In particular, we discuss the dynamical frame, the principal-axes frame, the ellipsoid frame, as well as the cartographic frame. We also describe the reference frame adopted by the MESSENGER science team for the release of their cartographic products and we provide expressions for transformations from this frame to the other reference frames

    Co-registration of MOLA profiles to HRSC DTMs for mapping local seasonal ice cover height variations at the Martian poles

    Get PDF
    We propose the co-registration of local laser profile segments to high resolution Digital Terrain Models (DTMs) as an approach for obtaining seasonal CO2 ice cover height variations on Mars. The co-registration is parameterized in instantaneous MOLA pointing angles involving a rigorous laser altimeter geolocation model. Thereby, the height bias of the MOLA footprint produced by the pointing bias could be compensated through an iterative process. The feasibility and advantages of this method are tested in an example region. The ultimate goal is to apply this method to Mars Orbiter Laser Altimeter (MOLA), SHAllow RADar (SHARAD) radar altimetry and high-resolution stereoscopic DTMs to generate long-term seasonal height change time series at the Martian poles with high spatial and temporal resolution

    Mapping height variations of seasonal ice cover at the Martian South Pole

    Get PDF
    Previously, we have proposed and validated the co-registration of local dynamic Mars Orbiter Laser Altimeter (MOLA) profile segments to static Digital Terrain Models (DTMs) as an approach for obtaining seasonal CO2 ice cover height variations on Mars. Building upon this, we introduce a post-correction procedure called “bi-RPCA” to further lower residual errors in the profiles and improve the precision of the height variation measurements. The ultimate goal is to apply this method to MOLA, SHAllow RADar (SHARAD) radar altimetry to generate long-term seasonal height change time series at the Martian poles with high spatial and temporal resolution

    The Ganymede Laser Altimeter (GALA) for the Jupiter Icy Moons Explorer (JUICE): Mission, science, and instrumentation of its receiver modules

    Get PDF
    The Jupiter Icy Moons Explorer (JUICE) is a science mission led by the European Space Agency, being developed for launch in 2023. The Ganymede Laser Altimeter (GALA) is an instrument onboard JUICE, whose main scientific goals are to understand ice tectonics based on topographic data, the subsurface structure by measuring tidal response, and small-scale roughness and albedo of the surface. In addition, from the perspective of astrobiology, it is imperative to study the subsurface ocean scientifically. The development of GALA has proceeded through an international collaboration between Germany (the lead), Japan, Switzerland, and Spain. Within this framework, the Japanese team (GALA-J) is responsible for developing three receiver modules: the Backend Optics (BEO), the Focal Plane Assembly (FPA), and the Analog Electronics Module (AEM). Like the German team, GALA-J also developed software to simulate the performance of the entire GALA system (performance model). In July 2020, the Proto-Flight Models of BEO, FPA, and AEM were delivered from Japan to Germany. This paper presents an overview of JUICE/GALA and its scientific objectives and describes the instrumentation, mainly focusing on Japan’s contribution

    Investigating Europa’s habitability with the Europa Clipper

    Get PDF
    The habitability of Europa is a property within a system, which is driven by a multitude of physical and chemical processes and is defined by many interdependent parameters, so that its full characterization requires collaborative investigation. To explore Europa as an integrated system to yield a complete picture of its habitability, the Europa Clipper mission has three primary science objectives: (1) characterize the ice shell and ocean including their heterogeneity, properties, and the nature of surface–ice–ocean exchange; (2) characterize Europa’s composition including any non-ice materials on the surface and in the atmosphere, and any carbon-containing compounds; and (3) characterize Europa’s geology including surface features and localities of high science interest. The mission will also address several cross-cutting science topics including the search for any current or recent activity in the form of thermal anomalies and plumes, performing geodetic and radiation measurements, and assessing high-resolution, co-located observations at select sites to provide reconnaissance for a potential future landed mission. Synthesizing the mission’s science measurements, as well as incorporating remote observations by Earth-based observatories, the James Webb Space Telescope, and other space-based resources, to constrain Europa’s habitability, is a complex task and is guided by the mission’s Habitability Assessment Board (HAB)
    • …
    corecore