13,061 research outputs found
Synchronizing Automata on Quasi Eulerian Digraph
In 1964 \v{C}ern\'{y} conjectured that each -state synchronizing automaton
posesses a reset word of length at most . From the other side the best
known upper bound on the reset length (minimum length of reset words) is cubic
in . Thus the main problem here is to prove quadratic (in ) upper bounds.
Since 1964, this problem has been solved for few special classes of \sa. One of
this result is due to Kari \cite{Ka03} for automata with Eulerian digraphs. In
this paper we introduce a new approach to prove quadratic upper bounds and
explain it in terms of Markov chains and Perron-Frobenius theories. Using this
approach we obtain a quadratic upper bound for a generalization of Eulerian
automata.Comment: 8 pages, 1 figur
Evolution of induced axial magnetization in a two-component magnetized plasma
In this paper, the evolution of the induced axial magnetization due to the
propagation of an electromagnetic (em) wave along the static background
magnetic field in a two-component plasma has been investigated using the Block
equation. The evolution process induces a strong magnetic anisotropy in the
plasma medium, depending nonlinearly on the incident wave amplitude. This
induced magnetic anisotropy can modify the dispersion relation of the incident
em wave, which has been obtained in this paper. In the low frequency Alfven
wave limit, this dispersion relation shows that the resulting phase velocity of
the incident wave depends on the square of the incident wave amplitude and on
the static background magnetic field of plasma. The analytical results are in
well agreement with the numerically estimated values in solar corona and
sunspots.Comment: 7 pages, 1 figur
Recommended from our members
The implementation of the constructivist needs research paradigm in inner city community needs assessment: A case report
Detecting Hidden Differences via Permutation Symmetries
We present a method for describing and characterizing the state of N
particles that may be distinguishable in principle but not in practice due to
experimental limitations. The technique relies upon a careful treatment of the
exchange symmetry of the state among experimentally accessible and
experimentally inaccessible degrees of freedom. The approach we present allows
a new formalisation of the notion of indistinguishability and can be
implemented easily using currently available experimental techniques. Our work
is of direct relevance to current experiments in quantum optics, for which we
provide a specific implementation.Comment: 8 pages, 1 figur
Preparation of pure and mixed polarization qubits and the direct measurement of figures of merit
Non-classical joint measurements can hugely improve the efficiency with which
certain figures of merit of quantum systems are measured. We use such a
measurement to determine a particular figure of merit, the purity, for a
polarization qubit. In the process we highlight some of subtleties involved in
common methods for generating decoherence in quantum optics.Comment: 5 pages, 3 figures, 1 tabl
- …