970 research outputs found

    Adaptive carbon export response to warming in the Sargasso Sea

    Get PDF
    Ocean ecosystem models predict that warming and increased surface ocean stratification will trigger a series of ecosystem events, reducing the biological export of particulate carbon to the ocean interior. We present a nearly three-decade time series from the open ocean that documents a biological response to ocean warming and nutrient reductions wherein particulate carbon export is maintained, counter to expectations. Carbon export is maintained through a combination of phytoplankton community change to favor cyanobacteria with highcellular carbon-to-phosphorus ratios and enhanced shallow phosphorus recycling leading to increased nutrient use efficiency. These results suggest that surface ocean ecosystems may be more responsive and adapt more rapidly to changes in the hydrographic system than is currently envisioned in earth ecosystem models, with positive consequences for ocean carbon uptake

    Site-specific siderocalin binding to ferric and ferric-free enterobactin as revealed by mass spectrometry

    Get PDF
    Both host and pathogen competitively manipulate coordination environments during bacterial infections. Human cells release the innate immune protein siderocalin (Scn, also known as lipocalin-2/Lcn2, neutrophil gelatinase-associated lipocalin/NGAL) that can inhibit bacterial growth by sequestering iron in a ferric complex with enterobactin (Ent), the ubiquitou

    The Price of Anarchy in Transportation Networks: Efficiency and Optimality Control

    Full text link
    Uncoordinated individuals in human society pursuing their personally optimal strategies do not always achieve the social optimum, the most beneficial state to the society as a whole. Instead, strategies form Nash equilibria which are often socially suboptimal. Society, therefore, has to pay a price of anarchy for the lack of coordination among its members. Here we assess this price of anarchy by analyzing the travel times in road networks of several major cities. Our simulation shows that uncoordinated drivers possibly waste a considerable amount of their travel time. Counterintuitively,simply blocking certain streets can partially improve the traffic conditions. We analyze various complex networks and discuss the possibility of similar paradoxes in physics.Comment: major revisions with multicommodity; Phys. Rev. Lett., accepte

    Interplay of motility and polymer-driven depletion forces in the initial stages of bacterial aggregation

    Get PDF
    Motile bacteria are often found in complex, polymer-rich environments in which microbes can aggregate via polymer-induced depletion forces. Bacterial aggregation has many biological implications; it can promote biofilm formation, upregulate virulence factors, and lead to quorum sensing. The steady state aggregation behavior of motile bacteria in polymer solutions has been well studied and shows that stronger depletion forces are required to aggregate motile bacteria as compared with their nonmotile analogs. However, no one has studied whether these same trends hold at the initial stages of aggregation. We use experiments and numerical calculations to investigate the polymer-induced depletion aggregation of motile Escherichia coli in polyethylene glycol solutions on short experimental timescales (∼10 min). Our work reveals that in the semi-dilute polymer concentration regime and at short timescales, in contrast to what is found at steady state, bacterial motility actually enhances aggregate formation by increasing the collision rate in viscous environments. These unexpected findings have implications for developing models of active matter, and for understanding bacterial aggregation in dynamic, biological environments, where the system may never reach steady state

    Towards a transformative understanding of the ocean’s biological pump: Priorities for future research - Report on the NSF Biology of the Biological Pump Workshop

    Get PDF
    NSF Biology of the Biological Pump Workshop, February 19–20, 2016 (Hyatt Place New Orleans, New Orleans, LA)The net transfer of organic matter from the surface to the deep ocean is a key function of ocean food webs. The combination of biological, physical, and chemical processes that contribute to and control this export is collectively known as the “biological pump”, and current estimates of the global magnitude of this export range from 5 – 12 Pg C yr-1. This material can be exported in dissolved or particulate form, and many of the biological processes that regulate the composition, quantity, timing, and distribution of this export are poorly understood or constrained. Export of organic material is of fundamental importance to the biological and chemical functioning of the ocean, supporting deep ocean food webs and controlling the vertical and horizontal segregation of elements throughout the ocean. Remineralization of exported organic matter in the upper mesopelagic zone provides nutrients for surface production, while material exported to depths of 1000 m or more is generally considered to be sequestered — i.e. out of contact with the atmosphere for centuries or longer. The ability to accurately model a system is a reflection of the degree to which the system is understood. In the case of export, semi-empirical and simple mechanistic models show a wide range of predictive skill. This is, in part, due to the sparseness of available data, which impedes our inability to accurately represent, or even include, all relevant processes (sometimes for legitimate computational reasons). Predictions will remain uncertain without improved understanding and parameterization of key biological processes affecting export.Funding for this workshop was provided by the National Science Foundation (NSF). Coordination and logistical support for this workshop was provided by the Ocean Carbon and Biogeochemistry (OCB) Program (www.us-ocb.org

    Addressing student models of energy loss in quantum tunnelling

    Full text link
    We report on a multi-year, multi-institution study to investigate student reasoning about energy in the context of quantum tunnelling. We use ungraded surveys, graded examination questions, individual clinical interviews, and multiple-choice exams to build a picture of the types of responses that students typically give. We find that two descriptions of tunnelling through a square barrier are particularly common. Students often state that tunnelling particles lose energy while tunnelling. When sketching wave functions, students also show a shift in the axis of oscillation, as if the height of the axis of oscillation indicated the energy of the particle. We find inconsistencies between students' conceptual, mathematical, and graphical models of quantum tunnelling. As part of a curriculum in quantum physics, we have developed instructional materials to help students develop a more robust and less inconsistent picture of tunnelling, and present data suggesting that we have succeeded in doing so.Comment: Originally submitted to the European Journal of Physics on 2005 Feb 10. Pages: 14. References: 11. Figures: 9. Tables: 1. Resubmitted May 18 with revisions that include an appendix with the curriculum materials discussed in the paper (4 page small group UW-style tutorial

    Statin-induced expression of CD59 on vascular endothelium in hypoxia: a potential mechanism for the anti-inflammatory actions of statins in rheumatoid arthritis

    Get PDF
    Hypoxia, which leads to dysfunctional cell metabolism, and complement activation both play central roles in the pathogenesis of rheumatoid arthritis (RA). Recent studies have reported that mice deficient for the complement-inhibitory protein CD59 show enhanced susceptibility to antigen-induced arthritis and reported that statins have anti-inflammatory effects in RA. We hypothesized that the anti-inflammatory effect of statins in RA relates in part to their ability to increase CD59 expression in hypoxic conditions and therefore to reduce complement activation. Flow-cytometric analysis showed that CD59 expression on endothelial cells (EC) was unaffected by atorvastatin in normoxia (21% O(2)), whereas in hypoxic conditions (1% O(2)) an up to threefold dose-dependent increase in CD59 expression was seen. This effect of hypoxia was confirmed by treatment of EC with chemical mimetics of hypoxia. The upregulation of CD59 protein expression in hypoxia was associated with an increase in steady-state mRNA. L-Mevalonate and geranylgeraniol reversed the response, confirming a role for inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase and geranylgeranylation. Likewise, inhibition by N(G)-monomethyl-L-arginine and N(G)-nitro-L-arginine methyl ester confirmed that CD59 upregulation in hypoxia was nitric oxide dependent. The expression of another complement-inhibitory protein, decay-accelerating factor (DAF), is known to be increased by atorvastatin in normoxia; this response was also significantly enhanced under hypoxic conditions. The upregulation of CD59 and DAF by atorvastatin in hypoxia prevented the deposition of C3, C9 and cell lysis that follows exposure of reoxygenated EC to serum. This cytoprotective effect was abrogated by inhibitory anti-CD59 and anti-DAF mAbs. The modulation of EC CD59 and DAF by statins under hypoxic conditions therefore inhibits both early and late complement activation and may contribute to the anti-inflammatory effects of statins in RA

    A case-control genome-wide association study identifies genetic modifiers of fetal hemoglobin in sickle cell disease.

    Get PDF
    Sickle cell disease (SCD) is a group of inherited blood disorders that have in common a mutation in the sixth codon of the β-globin (HBB) gene on chromosome 11. However, people with the same genetic mutation display a wide range of clinical phenotypes. Fetal hemoglobin (HbF) expression is an important genetic modifier of SCD complications leading to milder symptoms and improved long-term survival. Therefore, we performed a genome-wide association study (GWAS) using a case-control experimental design in 244 African Americans with SCD to discover genetic factors associated with HbF expression. The case group consisted of subjects with HbF≥8.6% (133 samples) and control group subjects with HbF≤£3.1% (111 samples). Our GWAS results replicated SNPs previously identified in an erythroid-specific enhancer region located in the second intron of theBCL11Agene associated with HbF expression. In addition, we identified SNPs in theSPARC,GJC1,EFTUD2andJAZF1genes as novel candidates associated with HbF levels. To gain insights into mechanisms of globin gene regulation in theHBBlocus, linkage disequilibrium (LD) and haplotype analyses were conducted. We observed strong LD in the low HbF group in contrast to a loss of LD and greater number of haplotypes in the high HbF group. A search of knownHBBlocus regulatory elements identified SNPs 5\u27 of δ-globin located in an HbF silencing region. In particular, SNP rs4910736 created a binding site for a known transcription repressor GFi1 which is a candidate protein for further investigation. Another HbF-associated SNP, rs2855122 in the cAMP response element upstream of Gγ-globin, was analyzed for functional relevance. Studies performed with siRNA-mediated CREB binding protein (CBP) knockdown in primary erythroid cells demonstrated γ-globin activation and HbF induction, supporting a repressor role for CBP. This study identifies possible molecular determinants of HbF production
    corecore