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Abstract 

Sickle cell disease (SCD) is a group of inherited hemoglobinopathies produced by several 

mutations in the 6th codon of the -globin (HBB) gene. However, patients with the same genetic 

mutation display a wide range of clinical symptoms and complications. Fetal hemoglobin (HbF) 

expression has been demonstrated as an important genetic modifier of SCD leading to improved 

long-term survival. Therefore to discover genetic factors associated with HbF expression, we 

performed a genome-wide association study (GWAS) using a case-control experimental design 

for 244 African American patients with SCD. The case group consisted of subjects with HbF 

>8.6% (133 samples) and control group subjects with HbF <3.2% (111 samples). Our GWAS 

replicated several SNPs previously identified in an erythroid-specific enhancer region located in 

the second intron of the BCL11A gene, highly associated with HbF expression. Moreover, we 

identified SNPs in SPARC, GJC1, EFTUD2 and JAZF1 as potential candidate genes associated 

with HbF level in sickle cell patients. To gain insights into mechanisms of globin gene regulation 

in the HBB locus, linkage disequilibrium (LD) and haplotype analysis was conducted. We 

observed strong LD in the low HbF group in contrast to a loss of LD and greater number of 

haplotypes in the high HbF group surrounding the -globin gene region. A search of known HBB 

locus regulatory elements demonstrated SNPs 5’ of -globin located in an HbF-silencing region. 

In particular SNP rs4910736 created a potential binding site for a known transcription repressor 

GFi1 as a potential gene target for further investigation. Another HbF-associated SNP rs7482144 

in the cAMP response element upstream of G-globin was analyzed for functional relevance. 

Studies performed with siRNA-mediated knockdown of CREB binding protein (CBP) in human 
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primary erythroid cells demonstrated -globin gene activation and HbF induction supporting a 

repressor role for CBP. The implications of our findings are discussed. 

 

Key words: GWAS, sickle cell disease, fetal hemoglobin, HBB locus, haplotypes, single 

nucleotide polymorphisms 
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Introduction 

Sickle cell disease (SCD) is a group of inherited hemoglobinopathies produced by 

different mutations in the 6th codon of the β-globin (HBB) gene on chromosome 11 with the 

hemoglobin S (HbS) variant being most common. Those individuals with homozygous mutations 

(HbSS) or heterozygous for the sickle mutation and β0-Thalassemia have the most severe disease 

phenotype and are at higher risk for developing clinical complications. SCD is characterized by 

acute vaso-occlusive events including pain episodes, stroke, splenic dysfunction, and acute chest 

syndrome among others which contribute to increased morbidity and early mortality. Despite the 

genetic simplicity of SCD as a Mendelian single gene disorder, sickle cell patients display 

extreme clinical heterogeneity (1,2). Two major modifiers of SCD clinical phenotypes, fetal 

hemoglobin (HbF; α2γ2) and α-thalassemia have been demonstrated by basic research and 

clinical studies and they were subsequently confirmed by genetic studies. HbF protects against 

many of the hematologic and clinical complications of SCD due to its ability to inhibit HbS 

polymerization (3,4). The discovery of genetic markers of HbF expression to identify novel 

targets for therapeutic development for SCD has been a major ongoing research effort.  

The Cooperative Study of Sickle Cell Disease (CSSCD), was a multi-institutional natural 

history study (5,6) that identified HbF as a modifier of mortality and risk factor for early death in 

sickle cell patients (7). This observations have been corroborated by numerous clinical studies of 

Europe, India, The Middle East and Africa SCD patients (8) highlighting the importance of 

understanding the genetic regulation of γ-globin gene expression. The 81-kb HBB locus on 

chromosome 11 consists of five functional genes including HBE1 (ε), HBG2 (Gγ), HBG1 (Aγ), 

HBD (δ) and HBB (β), expressed sequentially from 5’ to 3’ in a tissue- and development-specific 

manner during ontogeny (8) a process known as Hb switching. Expression of the β-like globin 
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genes is controlled in part by the locus control region (LCR) located 6-20 kb upstream of ε-

globin (9,10). To achieve normal hemoglobin switching, stage-specific transcription factors bind 

the LCR and globin promoters during erythropoiesis to activate globin gene expression (11) 

through a DNA looping mechanism (12). At birth HbF comprises 80-90% of the total 

hemoglobin synthesized and gradually decreases to <1% by 12 months. The discovery of 

heritable markers associated the major silencers of γ-globin expression provides a rational 

approach for precision medicine in SCD.  

To develop strategies to induce HbF, it is necessary to define cis-regulatory elements and 

DNA-protein interactions in the HBB locus that modify globin gene expression. In previous 

studies up to 40% of HbF producing capacity in sickle cell patients has been attributed genetic 

determinants in Xp22.2 (13), chromosome 8q (14) and genes in the 6q22.3-23.4 quantitative trait 

loci (15, 16).  However later genome-wide association studies (GWAS) have not identified genes 

on the X chromosome associated with HbF. Thein and colleagues were the first to demonstrate 

single nucleotide polymorphisms (SNPs) in the HBS1L-MYB inter-genic region (HMIP) on 6q23 

accounting for 17.6% of HbF variance in Northern Europeans (17) and later they identified the 

BCL11A quantitative trait locus (18) accounting for 15% of HbF variance. Subsequently, Uda et 

al. (19) confirmed SNPs in the BCL11A gene associated with high HbF in Sardinian thalassemia 

patients, establishing the first potential major repressor of the -globin gene. A third locus that 

contributes to HbF expression is the -158Xmn1 HBG2 SNP (15,20).  

GWAS studies to identify inherited HbF determinants in African American sickle cell 

patients have been conducted using CSSCD patients (21-24). The GWAS conducted by (23) 

confirmed BCL11A (rs766432) and identified the ORB1B5/OR51B6 (rs4910755) genes 

associated with HbF levels. A subsequent meta-analysis was conducted using GWAS genotype 
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data generated in 7 African American SCD cohorts totaling 2040 patients (25). The most 

significant SNPs were identified in BCL11A (rs766432) and the HMIP region (rs9494145) which 

represented 11.1% and 3.2% of the phenotypic variability in HbF, respectively. Recently, the 

first GWAS was conducted in a Tanzanian population of 1,213 HbSS and HbSβ0-Thalassemia 

patients (26); similar to African Americans, SNPs in BCL11A and the HMIP region were 

replicated. Interestingly the -158Xmn1-HBG2 (rs782144) SNP was not replicated in Tanzanian 

patients similar to previous results for African American sickle cell patients (23,25).  In addition, 

eight novel SNPs were identified in the Tanzanian population that may be associated with HbF 

expression. 

  The second major modifier of clinical phenotype is expression of the -globin genes 

(HBA1/HBA); approximately one-third of sickle cell patients of African descent have coexisting 

α-thalassemia due to the common 3.7-kb deletion (-3.7) (1). Coexisting α-thalassemia reduces 

intracellular hemoglobin concentrations, thereby reducing HbS polymerization, red cell sickling, 

and decreased hemolysis. A SNP in NPRL3 (rs7203560) on chromosome 16 was identified by 

GWAS and validated by targeted genotyping in an independent cohort (27). The HBA1/HBA2 

genes regulatory element, hypersensitive sites (HS)-33, HS-40 and HS-48 is located in introns of 

NPRL3. When adjusting for HbF and α-thalassemia, variants of the HBA1/HBA2 gene regulatory 

loci in NPRL3, were associated with reduced hemolysis in SCD.  

In our current study we conducted a case (high HbF) control (low HbF) GWAS to 

identify novel genetic modifiers of -globin expression. As previously confirm in several 

populations, SNPs in BCL11A were associated with HbF levels in our population along with 

four additional genes suggestive of novel candidate loci. High-density SNP mapping of the 81-kb 

HBB locus revealed haplotype tagging-SNPs that define unique haplotype patterns associated 
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with high and low HbF groups. Knockdown of the transcription factor CREB1 binding protein 

which interacts upstream of the G-globin gene enhances HbF expression. The implications of 

our findings are discussed.   

 

Methods and Materials 

DNA samples sources – A total of 254 genomic samples were analyzed in this study consisting 

of 155 samples collected during the CSSCD. These samples were obtained after approval from 

the Biologic Specimen and Data Repository Information Coordinating Center at the National 

Heart Lung and Blood Institute. Thirty samples were obtained from the Comprehensive Sickle 

Cell Centers Collaborative Data (CDATA) study and the remaining samples were contributed by 

Dr. Samir K. Ballas, Thomas Jefferson University.  

 

Genotype determination - The Illumina Omni1-Quad System (San Diego, CA) was used to 

genotype the DNA samples since this chip contains 1,140,419 SNPs with 76% coverage of SNPs 

for people of African ancestry. Genotype data quality control and SNP calls were generated with 

Illumina’s Genome Studio software. For the HBB locus haplotype analysis, genotype data for 

SNPs rs2855121 and rs2855122 were determined using TaqMan® assay probes (ThermoFisher 

Scientific, Grand Island, NY) for real-time PCR detection. 

 

GWAS analysis - Allele associations were calculated using the case-control association test as 

implemented in PLINK version 1.07 (28). PLINK performs all necessary data management tasks 

for GWAS, including generation of summary statistics for quality control, detection of 

population stratification, testing for statistical association at the single SNP, multiple SNPs and 
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haplotype levels. The P values were plotted against genomic location using Haploview version 

4.2 (29). Allele association with case or control status was assessed by Chi-squared test and the 

expected and observed distributions of SNPs were determined by statistical analysis. The 

expected numbers of SNPs under the null hypothesis at the nominal significance threshold were 

generated.  

 

Haploview analysis - Genotype data were inspected and used to construct HBB locus 

haplotypes using Haploview 4.2 (http://www.broad.mit.edu/haploview), which utilizes the EM 

algorithm to calculate linkage disequilibrium (LD) coefficients (D’) and to infer haplotypes. 

Examination of the genotypes was conducted to determine the conformity with Hardy-Weinberg 

equilibrium before Haploview analysis. The SNPs with statistically significant departures 

(P<0.001) and minor allele frequencies < 5% were excluded from haplotype analysis. SNPs with 

strong LD (D’ ≥ 0.8) were arranged into haplotype block following Wang’s algorithm (30). 

Haplotype-tagging SNPs (tagSNPs) were selected on a block-by-block basis to identify SNPs 

that represent non-redundant information about genomic structure.   

 

Two phase primary erythroid cultures - Primary erythroid progenitors were obtained from 

human peripheral blood mononuclear cells purchased from Carter BloodCare (Fort Worth, TX) 

in accordance with guidelines of the Institutional Review Board at the University of Texas at 

Dallas. Expansion and induced erythroid differentiation was conducted according to the 

procedure previously published by our lab (31). For gene silencing experiments in primary 

erythroid cells, SMARTpool siRNA for CBP (M-series, GE Dharmacon) and non-targeting 
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scramble RNA were transfected on day 28 of primary cell culture using a CD34+ Nucleofector 

kit and Nucleofector device (Amaxa, Allendale, NJ) as described previously by our lab (31).  

 

Reverse transcription-real time polymerase chain reaction (RT-qPCR) - To quantify gene 

transcription levels, total RNA was extracted using RNA Stat-60TM (TEL-TEST “B” Inc., 

Friendswood, TX) and used for RT-qPCR for -globin, β-globin and GAPDH as reported 

previously (32); primers to quantify actin and CREB binding protein (CBP) gene expression 

were purchased from Qiagen (Valencia, CA).  

 

Western blot - To determine CBP knockdown in primary erythroid progenitors, western blot 

analysis were performed using total protein extracts and anti-CBP antibody (SC-583, Santa Cruz 

Biotechnology, Dallas, TX) and anti-Actin antibody (MAB1501, Millpore, Billerica, MA) as 

previously published (33).  

 

Fluorescence immunocytostaining - Cells were centrifuged on a glass slide to obtain a 

monolayer by Cytospin preparation. Immunocytostaining procedure with anti--globin 

fluorescein isothiocyanate antibody (Bethyl Laboratories, Montgomery, TX) was conducted as 

previously published (31). 

 

Enzyme-linked immunosorbent assay (ELISA) - After the different treatments were 

conducted, total protein lysates were prepared and ELISA performed as previously published 

(31). 
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Statistical analysis - Each condition was repeated independently three times with triplicate 

samples for each experiment; data are shown as the mean ± standard error of the mean (SEM). 

The student’s t-test was applied where two experimental conditions were compared to determine 

the statistical significance at P< 0.05. 

 

Results 

GWAS confirm association of BCL11A with HbF levels 

 The ability of HbF to ameliorate the clinical severity of SCD and -Thalassemia has been 

well established (34). Furthermore the CSSCD demonstrated milder symptoms and improved 

survival in SCD patients with HbF >8.6% (7). In other diseases when a phenotype associated 

with morbidity and mortality has been identified, using a case-control approach has decreased 

the sample size required to identify SNPs associated with genetic modifiers of the clinical 

phenotype (35, 36). Therefore, given the findings related to mortality and HbF in the CSSCD, we 

designed a case-control GWAS in HbSS subjects where patients with HbF <3.2% were selected 

as the control group (low HbF) those with HbF >8.6% were designated in the case group (high 

HbF). Our goal was to identify genetic variants associated with either high or low HbF 

expression in SCD.  

All DNA samples analyzed in the GWAS met quality control and were used to collect 

genotype data on the IlluminaOmni1-Quad chip contains 1,140,419 SNPs with 76% SNP 

coverage for people of African ancestry. We genotyped 254 African American diagnosed with 

HbSS and HbSβ0-Thalassemia and HbF >8.6% (case, n=133), HbF <3.2% (controls, n=111), and 
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10 intermediate HbF subjects (Table 1). We excluded 45,142 SNPs as monomorphic, 546 as 

singletons and 1,346 based on departures from Hardy-Weinberg Equilibrium (P<0.001).  We 

further excluded 181,454 SNPs that showed minor allele frequencies < 5%. After frequency and 

genotyping pruning, 833,760 SNPs were used in the GWAS analysis.  

The first genomic analysis was conducted to determine the allele association of SNPs 

using the case-control association test implemented in PLINK version 1.07. Fig. 1 shows the 

distribution of P-values (Manhattan plot) and distribution of SNPs on chromosome 2 and 5 

significantly associated with HbF levels. Using P<1x10-5, we identified 74 SNPs of potential 

significance (data not shown). The top 4 genes and 2 intergenic regions with genome-wide 

significance (P<1X10-6) associated with high HbF are shown in Table 2. The intron region of the 

BCL11A gene contained 14 SNPs of which rs1896295, rs45606437, rs7584113, rs10172646, and 

rs1896294 have not been previously reported. This could reflect the differences in the SNP allele 

frequency in African Americans compared to European or African populations. On the other 

hand, these SNPs could have high LD with other SNPs validated in the region.  

Our GWAS data also identified SNPs in the SPARC, GJC1, EFTUD2 and JAZF1 genes 

associated with high HbF (Table 2). SPARC (secreted protein acidic and rich in cysteine) is a 

widely expressed profibrotic protein linked to human obesity, insulin resistance, and diabetic 

retinopathy (37). The GJC1 gene (Gap Junction Protein Gamma 1; connexin45) belongs to a 

group of proteins that form intercellular channels to allow exchange of small molecules between 

cells (38). The elongation factor Tu GTP binding domain containing 2 (EFTUD2) encoded a 

GTPase which is a component of the spliceosome complex (39). The fourth high HbF-associated 

SNP was identified in the zinc finger nuclear protein JAZF1 that functions as a transcription 

repressor (40).  
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To gain insight into possible role of novel SNPs identified in our study, we performed an 

alignment between HbF-associated SNPs across the BCL11A gene and functional genomics data 

generated by the Encyclopedia of DNA Elements (ENCODE) project. We focused our in silico 

analysis to a 15-kb region (hg19; 60,713,000 to 60,728,000) enriched with HbF-associated SNPs 

(Fig. 2) with the BCL11A gene shown at the top. The ENCODE results for K562 cells showed 

low level enrichment of enhancer activity represented by histone H3K4me1, but no significant 

H3K4me3 mark detected. DNase hypersensitivity was detected in this region as well as in vivo 

binding of the transcription factors GATA1 and TAL1. Moreover, three loci were detected with 

strong GATA1-associated enrichment in erythroblasts corresponding to the erythroid enhancer 

region reported by Bauer et al. (41) located at +55, +58 and +62 relative to the BCL11A 

transcription start site. Two of the SNPs identified in this GWAS including rs1427407 (+62 site) 

and rs6738440 (+58 site) could potentially alter recruitment of transcription factors to the region. 

Using a case-control approach for GWAS analysis of SCD patients with low and high HbF 

levels, we captured previously reported and novel SNPs located in the erythroid enhancer region 

in BCL11A.  In addition, we identified novel candidate genes that may be involved in γ-globin 

gene regulation. 

 

High-density SNP mapping in the HBB locus  

Transcriptional regulation of the β-like globin genes depends on trans-acting factors 

(activators and repressors), cis-acting elements (DNA binding regions for binding of trans-acting 

factors) and epigenetic changes in chromatin structure. The LCR provides essential enhancer 

activity for high-level sequential expression of the downstream -like globin genes during 

developmentally regulated hemoglobin switching (12). Numerous studies support the notion that 
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DNA sequences within 3-4 kb upstream or downstream of the Aγ-globin and Gγ-globin genes 

influence their transcription rate during erythroid maturation. Thus we performed a case-control 

analysis for SNPs in the HBB locus to identify genomic structural divergences between low HbF 

and high HbF groups using Haploview 4.2.  Based on the functional role of SNPs in the Gγ-

globin promoter (32,42), we also determined genotypes for rs2855121 and rs2855122 by 

TaqMan® assay. The combined TaqMan and HBB locus genotype data generated using the 

Illumina Omni-Quad 1 chip (101 SNPs) were used for the case-control analysis. We identified 

seven SNPs in the HBB locus (Table S1) with p<0.04; 3 SNPs were located within 30-kb of the 

intergenic region between -globin and Gγ-globin (rs4910740, rs10128653 and rs2855122) and 4 

SNPs in the region between the β-globin and δ-globin genes (rs16912210, rs4910736, 

rs4402323 and rs4320977). Historically rs10128653 and rs2855122 have been implicated in 

forming a pre-G genetic framework that influences HbF expression in the context of HBB locus 

haplotypes defined in different African populations (43). These SNPs reflect changes at the 

genomic DNA level which may relate to the persistent expression of HbF in sickle cell patients. 

Further functional studies are needed to ascertain the biological imprint of these SNPs and the 

region in which they are located.  

 

Characterization of HBB locus haplotypes and tagSNPs 

Next we performed LD and haplotype analysis of the HBB locus with genotype data 

generated from low HbF (101 subjects) and high HbF (103 subjects) groups using Haploview 

4.2. There were 103 SNPs spanning the HBB locus (Fig. 3A) which produced 4 haplotype blocks 

based upon the 4th Gamete Rule for the low HbF cohorts (Fig. 3B). Overall there was strong LD 
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across the HBB locus in this group illustrated by the LD plot and the allelic D’ values shown 

between the haplotype blocks (D’>0.8). On the contrary, we observed decreased LD and more 

diverse haplotypes in the high HbF cohort as shown in Fig. 3C with 8 haplotype blocks inferred. 

Interestingly, the region between rs10128653 and rs7482144 (-158XmnI-HBG2) displayed a 

lower allelic mean D’<0.8 in the high HbF group.  

Haploview analysis also identifies a subset SNPs which carry non-redundant information 

(tag-SNP) which can be used to define the diversity and total number of haplotypes in a given 

region. We observed 14 tagSNPs in the low HbF group with 3 that were unique to this group 

(Table S2) and 18 tagSNPs in the high HbF group with 7 unique tagSNPs. These results support 

a diversified genomic structure in sickle cell patients with the high HbF providing insight into 

mechanisms of persistent HbF expression in this group.  

 

HbF-associated SNPs located in a known HbF silencing region 

We next analyzed the 7 HbF-associated SNPs listed on Table S1 in the HBB locus to 

establish haplotypes in the low and high HbF groups. Fig. 4A shows that these 7 SNPs formed 

one haplotype block with strong LD in the low HbF cohorts with five unique haplotypes at 

decreasing frequency inferred. Analysis of the same 7 SNPs in the high HbF group demonstrated 

one haplotype block with seven unique haplotypes inferred (Fig. 4B). Interestingly, we identified 

SNPs rs4910736, rs4402323, and rs4320977 located within the 3.5-kb HbF silencing region 

upstream of the δ-globin gene (Fig. 4C) identified by Sankaran et al. studying δβ0-Thalassemia 

patient samples with deletional hereditary persistence of HbF (44). In that report, BCL11A was 

shown to silence γ-globin expression by interacting with a transcription co-repressor complex in 

adult erythroid cells.  
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To gain evidence for an impact of these SNPs, we analyzed functional genomics data 

produced by the ENCODE project for the 5-kb region 5’ of the δ-globin gene in K562 cells (Fig. 

4D). There was an absence of RNA polymerase II signal and increased binding of repressor 

complexes, such as HDAC1, LSD1, CHD2 and COREST supporting involvement of this region 

in transcription repression. Furthermore, we performed binding site prediction using Tfsitescan. 

There was no difference on binding site prediction for rs4402323 with either C or T allele at the 

SNP site, whereas rs4320977-G allele predicted a binding site for CCAAT and enhancer binding 

protein (data not shown). Most interestingly, as shown in Fig. 4E, the A allele of rs4910736 

produced no significant binding site at the SNP position, whereas the C allele predicted a binding 

site for Growth Factor Independence 1 (GFi1). GFi1 and its paralogue GFi1B are critical 

transcription regulators for proliferation and maturation of hematopoietic stem cells (45-47). 

Although it is unclear whether GFi1/GFi1B plays a role in repressing γ-globin transcription, our 

analysis provides evidence for a potential GFi1 regulatory sequence in the HbF silencing region.  

 

CBP represses γ-globin expression through the HBB locus tagSNP rs2855122 

To gain evidence that tagSNPs play a regulatory role in γ-globin transcription we 

performed functional analysis of SNP rs2855122 located in the cAMP response element 

(TGACGTCA) at -1225 in the Gγ-globin promoter (G-CRE). We have demonstrated previously 

the trans-acting factor CREB1 binds to the G-CRE to induce γ-globin transcription through a p38 

mitogen activated protein kinase-dependent mechanism (48). Sequential-chromatin 

immunoprecipitation in K562 cells has shown previously that CREB1 and CBP bind 

simultaneously to the G-CRE region in vivo (48). In addition, we observed decreased CREB1 

binding to the G-CRE site in vivo during late erythropoietin-induced erythroid differentiation 
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(33). Subsequent studies from our lab showed a repressor role of CBP through competition with 

KLF4 binding in the proximal γ-globin promoter CACCC element in a luciferase reporter system 

(49). Thus, we investigated the effect of CBP knockdown on globin expression in human 

primary erythroid progenitors at Day 28 during late stage erythroid maturation when the -globin 

gene is silenced. We observed enhanced γ-globin transcription and HbF production with dose-

dependent siRNA-mediated CBP gene knockdown (Fig. 5A-C); the number of HbF positive cells 

measured by flow cytometry was increased as well (Fig. 5D) supporting a repressor role of CBP 

in γ-globin regulation in this condition.  

 

Discussion 

Mutations in the HBB locus, including those located in the -globin gene promoters 

(50,51), and quantitative trait loci at distant sites on chromosomes 2, 6, 8, and the X chromosome 

have been associated with high HbF expression in humans (13-19,23,25). GWAS in several 

populations has identified SNPs in BCL11A, the HMIP region and -158Xmn1-HGB2 associated 

with HbF expression.  However, SNPs in BCL11A show the strongest effect on -globin 

expression accounting for approximately 11% of HbF variance in African American sickle cell 

patients (23,25) suggesting additional major genetic modifiers of HbF remain to be discovered.  

In our study, we performed GWAS analysis using African American sickle cell patients and a 

case (high HbF)-control (low HbF) experimental design. We identified multiple SNPs in 

BCL11A to replicate previous studies (18,19,23,25).  BCL11A is demonstrated to be a stage-

specific repressor of -globin expression in human primary erythroid progenitors (52) and is 

involved in γ-globin gene silencing in adult sickle cell transgenic mice (53). The silencing effect 

of BCL11A involves reconfiguration of the HBB locus through interactions of BCL11A with 
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GATA1, FOG1, and SOX6 as well as the NuRD deacetylase and remodeling complex (52,54). 

Genetic studies in a Maltese family showed that KLF1 p.K288X carriers had reduced BCL11A 

expression (55) and elevated HbF levels. Subsequent studies demonstrate that KLF1 is a direct 

activator of BCL11A in human erythroid progenitors and transgenic mice (55,56). Recently an 

erythroid specific enhancer was discovered in the second intron of BCL11A by GWAS (41); four 

SNPs (rs1427407, rs6706648, rs6738440, and rs7606173) were associated with HbF levels in 

SCD patients of African and Arab-Indian descent (57,58). The erythroid enhancer is an attractive 

DNA element for lineage-specific BCL11A gene silencing as a strategy for gene therapy in SCD 

and -Thalassemia. 

Genome-wide studies by Thein and colleagues identified the HMIP region on 

chromosome 6q23 as a modifier of HbF production in the European population (17,59). A meta-

analysis of GWAS data from over 2000 sickle cell patients replicates the association of HbF 

levels with the HMIP region (25). More recently, GWAS study demonstrated SNPs in the HMIP 

region to associate with HbF level in SCD patients in Tanzania (26), Northern Brazil, and 

Cameroon (60,61). A previous study demonstrated the ability of MYB to regulate HbF 

production in erythroid cells (62). Subsequently, Stadhouders et al. described a functional 

erythroid-specific enhancer located in the HMIP region which regulates MYB expression (63). 

In our study we did not observe SNPs in the HMIP region associated with HbF level in the 

patients tested which most likely is due to small sample size and/or differences in ancestry of our 

population. A recent publication demonstrated the differences in haplotype structures in the core 

haplotype block 2 of HMIP locus among European, African, and African American SCD 

subjects (64).  
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Studies in healthy individuals with elevated HbF identified SNPs in the promoters of the 

HBG1 and HBG2 genes that produce non-deletional hereditary persistence of HbF; however, 

molecular mechanisms or trans-activating factors that explain the role of these mutations have 

not been identified. The most extensively studied is the XmnI mutation (C to T) at -158 G-

globin (rs7482144), associated with elevated HbF levels in selected populations by GWAS 

studies (17,25,26). Individuals carrying this mutation have a delay in the Gγ to Aγ switch (65) 

and an increase in F-cells was demonstrated in a European twin study (66). Similar to other 

GWAS findings in sickle cell patients of African descent (23,25,26), we did not observed an 

association of the -158Xmn1-HBG2 mutation with HbF levels in our cohort.  

We also identified SNPs in the SPARC, GJC1, EFTUD2, and JAZF1 genes associated 

with HbF expression. Multiple SNPs were found in the SPARC gene which is expressed in bone 

marrow stromal and hematopoietic cells. Gene expression analysis of stem cells from patients 

with -5q syndrome showed decreased SPARC expression among other proteins associated with a 

lower platelet count and impaired ability to form erythroid burst-forming units (67). Recent 

studies in SPARC-null mice demonstrated SPARC plays a crucial role in the regulation of early 

B lymphopoiesis (68); however SPARC has not been demonstrated to regulate globin gene 

expression. We also identified the transcription repressor JAZF1 associated with high HbF 

expression although at a lower genome-wide significance. SNPs in JAZF1 have been associated 

with type 2 diabetes through a non-coding signal in the first intron, which regulate islets cell 

function (69). Studies mapping transcriptional activity showed increased binding of a repressor 

protein complex to a cis-regulatory element in JAZF1 intron 1. Additional studies are needed to 

confirm a functional role of these proteins identified by GWAS in -globin regulation in sickle 
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cell patients.  Additional studies are needed to confirm a functional role of these proteins in -

globin regulation in sickle cell patients.   

In contrast to other published GWAS studies we performed a detailed analysis of the 

HBB locus to define haplotypes associated with high and low HbF expression. Historically, five 

major β-haplotypes, including Senegal, Benin, Central African Republic (Bantu), Cameroon, and 

Asian (Indian/Saudi-Arabian) (34,51,70-73), have been defined in African SCD populations; 

unfortunately, these haplotypes are not predictive of HbF levels. We recently published data 

demonstrating that β-haplotypes generated using traditional methods are insufficient to define the 

genomic structure in HBB locus of SCD patients (74). These findings were germane to our 

experimental design using a case-control approach to analyze genotype data for SNPs identified 

in the HBB locus which did reach significance at the genome-wide level. However, the 

difference in haplotype composition in low- and high-HbF groups may provide insights into 

genomic structural change in the HBB locus between these groups.  

When comparing haplotypes in the case-control groups, we observed more inferred 

haplotypes in the high-HbF group suggesting less LD among SNPs in the HBB locus; in 

particular SNPs between the G-globin and -globin genes. Recent studies demonstrated inter-

genetic regions in the HBB locus involved in -globin regulation through long-range chromatin 

looping mediated by various transcription factors and non-coding RNA transcripts (54,75,76). 

Xu et al. demonstrates a repressor complex consisting of BCL11A, HDAC1, LSD1 (Lysine-

specific demethylase 1A), and CoREST (Corepressor for Element-1-silencing transcription 

factor) binds the inter-genetic region between the A- and -globin genes (76). Subsequently, 

Kiefer et al. reported that genomic sequence between A- and -globin encodes BGLT3, a non-

coding RNA transcript primarily expressed in -globin producing cells (75). By contrast, BGLT3 
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is not transcribed in late erythropoiesis when -globin expression is high due to binding of a 

repressor complex consisting of ETO2 and BCL11A resulting in diminished long-range 

chromatin looping between -globin and the LCR (75).  Sankaran and colleagues identified a 

putative HbF silencing region 3.5 kb 5’ of -globin where the BCL11A repressor complex binds 

(44). Additional studies localized the HbF silencing region to a 2.4-kb region outside the 

BCL11A binding region supporting other mechanisms of -globin regulation (77).  

Our HBB locus analysis identifies SNPs across potential HbF activating (- and G-

globin) and silencing regions (5’of -globin) and novel SNP rs4910736 that creates a GFi1 

binding site. The nuclear proteins GFi1 and GFi1B can recruit LSD1 and CoREST to the 

targeted chromatin region as well as interact with HDAC1 and G9a (H3K9 methyltransferase). 

The formation of protein complexes between GFi1/GFi1B and their various interacting partners 

and subsequent binding to targeted DNA sequences mediates histone modifications associated 

with transcription silencing and regulation of hematopoiesis (45-47,78). Studies by Vassen and 

colleagues demonstrated increased transcription of the embryonic globin genes and delayed 

erythroid maturation in Gfi1B-null mice without changes in BCL11A gene expression (79).  

The HBB locus SNP rs2855122 located in G-CRE was also associated with HbF levels. 

We previously confirmed a functional role of this element in -globin regulation and 

characterized a multi-protein complex composed of trans-activators including CREB1 and ATF2 

and repressors such as HDAC1 among others (33). Therefore we conducted gene silencing 

studies for CBP, a known binding partner of CREB1; the data support CBP as a repressor of -

globin expression. However, additional studies are warranted to fully define molecular 
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mechanisms of -globin gene regulation mediated by novel HbF-associated SNPs identified in 

this study.  
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Figure Legends 

Fig. 1 Analysis of GWAS data by PLINK. The genotype data generated by the entire cohort 

were subjected to case-control association analysis using PLINK software. The top 200,000 

SNPs were graphed using Haploview with logarithm transformed P values (Y axis) and the 

chromosomes in which the various SNPs reside (X axis). The vertical red box shows significant 

SNPs in the BCL11A (Chr2) and SPARC (Chr5) genes.  

Fig. 2 Functional data for HbF-associated BCL11A SNPs locate in an erythroid-specific 

enhancer region. Results generated by the ENCODE project for the BCL11A gene were 

analyzed using the UCSC genome browser (genome.ucsc.edu) with hg19 chromosomal 

coordinates. The BCL11A gene on Chromosome 2 is shown with its major isoforms on the top 

and AL833181 is a predicted non-coding transcript. A 15-kb region from 60,713,000 to 

60,728,000 was enlarged to depict the functional ChIP-seq results in K562 cells (middle) 

including DNase hypersensitivity (DNase HS), H3K4me1, H3K4me3, RNA Polymerase II 

binding (Pol II), GATA1 and TAL1 to the region. ChIP-seq results for GATA1 in peripheral 

blood derived erythroblasts (PBDE) demonstrate the +55, +58 and +62 erythroid-specific 

enhancer regions. The box on the bottom, illustrates the top HbF-associated BCL11A SNPs 

indicated by the bars and respective dbSNP ID, identified in our GWAS.  

Fig. 3 High-density SNP-mapping in the HBB locus. A) Shown is a schematic diagram of the 

distribution of the HBB locus SNPs (101) on the IlluminaOmni1-Quad chip. Globin genes are 

indicated by boxes. The schematic is not drawn to scale.  Abbreviations: LCR, locus control 

region; HS, hypersensitive site. Symbols: Black dot, IlluminaOmni1-Quad SNPs; Red dot, 

Taqman SNPs -1280GATA1 (rs2588121) and -1225CRE (rs2588122); Green dot, βS-globin 
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SNP, rs334. Haploview was used to infer haplotypes with combined Illumina and Taqman 

genotype data. The degree of LD is defined by value of D’ and LOD (logarithm of the likelihood 

odds ratio), which is a measure of confidence in the D' value. The boxes are interpreted as 

follows: red, strong LD (LOD >2, D’ = 1), white no LD (LOD < 2, D’ < 1), and pink (LOD = 2, 

D’ <1), and blue (LOD < 2, D’ =1) indicate intermediate LD. The D’=1 unless indicated in each 

box; by convention D’ is multiplied by 100. SNPs with strong LD define haplotype blocks (black 

triangle) and the size of the region in LD is shown in parentheses. B) Haploview analysis for 

101subjects with low HbF (mean HbF=1.84%). The schematic diagram of HBB locus is shown 

on top. C) Haploview analysis was completed for 133 subjects with high HbF (mean 

HbF=13.83%). The schematic diagram of the HBB locus is shown on top.  

 

Fig. 4 Analysis of HbF-associated HBB locus SNPs potentially involved in γ-globin 

silencing. A) The LD profile for the low HbF group is shown at the left image. The color scheme 

for LD pattern is the same as defined in Fig. 2. The inferred haplotypes for these SNPs are 

depicted on the right. B) The LD pattern and inferred haplotypes for the high HbF group are 

shown. C) The HbF-associated SNPs identified in the HBB locus between 3’ -globin and -

globin, and HbF silencing region are shown. D) K562 ChIP-seq data produced by the ENCODE 

project were analyzed using UCSC genome browser with hg19 chromosomal coordinates. 

Shown are the tracks for the proteins indicated between positions 5,254,000 to 5,262,140. Three 

HbF-associated SNPs are indicated at the bottom. E) SNP rs4910736 with 320-bp flanking 

sequence was analyzed by Tfsitescan software to identify predicted transcription factor binding 

sites. The results for the A allele and C allele are shown on the top and bottom respectively.    
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Fig. 5 CBP knockdown induces γ-globin expression in primary erythroid progenitors. 

Using a two-phase liquid cell culture system erythroid progenitors were generated and transiently 

transfected at day 28 with siRNA against CBP; changes in -globin and HbF expression were 

quantified (See Materials and Methods). A) Shown in the graph is the RT-qPCR data for CBP 

mRNA normalized by the internal control Actin. A representative image of western blot analysis 

for CBP and Actin are shown on the bottom; *p<0.05. B) RT-qPCR analysis of γ-globin, β-

globin and GAPD was completed; the fold change of -globin expression under the different 

conditions is shown. C) ELISA was performed with anti-HbF and total Hb antibodies. The raw 

data were normalized by total hemoglobin (T-Hb) and total protein (T-Protein) for each sample. 

D) Immunocytostaining with anti--globin fluorescein isothiocyanate antibody demonstrated an 

increase in HbF producing cells (photomicrograph on left). The quantitative data showing the % 

HbF-positive cells under the different conditions are shown in the graph; **p<0.001.  
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