517 research outputs found

    Reduced glycogen availability is associated with increased AMPKα2 activity, nuclear AMPKα2 protein abundance, and GLUT4 mRNA expression in contracting human skeletal muscle

    Full text link
    Glycogen availability can influence glucose transporter 4 (GLUT4) expression in skeletal muscle through unknown mechanisms. The multisubstrate enzyme AMP-activated protein kinase (AMPK) has also been shown to play an important role in the regulation of GLUT4 expression in skeletal muscle. During contraction, AMPK [alpha]2 translocates to the nucleus and the activity of this AMPK isoform is enhanced when skeletal muscle glycogen is low. In this study, we investigated if decreased pre-exercise muscle glycogen levels and increased AMPK [alpha]2 activity reduced the association of AMPK with glycogen and increased AMPK [alpha]2 translocation to the nucleus and GLUT4 mRNA expression following exercise. Seven males performed 60 min of exercise at ~70% [VO.sub.2] peak on 2 occasions: either with normal (control) or low (LG) carbohydrate pre-exercise muscle glycogen content. Muscle samples were obtained by needle biopsy before and after exercise. Low muscle glycogen was associated with elevated AMPK [alpha]2 activity and acetyl-CoA carboxylase [beta] phosphorylation, increased translocation of AMPK [alpha]2 to the nucleus, and increased GLUT4 mRNA. Transfection of primary human myotubes with a constitutively active AMPK adenovirus also stimulated GLUT4 mRNA, providing direct evidence of a role of AMPK in regulating GLUT4 expression. We suggest that increased activation of AMPK [alpha]2 under conditions of low muscle glycogen enhances AMPK [alpha]2 nuclear translocation and increases GLUT4 mRNA expression in response to exercise in human skeletal muscle. <br /

    High intensity interval training improves liver and adipose tissue insulin sensitivity

    Get PDF
    Objective: Endurance exercise training reduces insulin resistance, adipose tissue inflammation and non-alcoholic fatty liver disease (NAFLD), an effect often associated with modest weight loss. Recent studies have indicated that high-intensity interval training (HIIT) lowers blood glucose in individuals with type 2 diabetes independently of weight loss; however, the organs affected and mechanisms mediating the glucose lowering effects are not known. Intense exercise increases phosphorylation and inhibition of acetyl-CoA carboxylase (ACC) by AMP-activated protein kinase (AMPK) in muscle, adipose tissue and liver. AMPK and ACC are key enzymes regulating fatty acid metabolism, liver fat content, adipose tissue inflammation and insulin sensitivity but the importance of this pathway in regulating insulin sensitivity with HIIT is unknown. Methods: In the current study, the effects of 6 weeks of HIIT were examined using obese mice with serine–alanine knock-in mutations on the AMPK phosphorylation sites of ACC1 and ACC2 (AccDKI) or wild-type (WT) controls. Results: HIIT lowered blood glucose and increased exercise capacity, food intake, basal activity levels, carbohydrate oxidation and liver and adipose tissue insulin sensitivity in HFD-fed WT and AccDKI mice. These changes occurred independently of weight loss or reductions in adiposity, inflammation and liver lipid content. Conclusions: These data indicate that HIIT lowers blood glucose levels by improving adipose and liver insulin sensitivity independently of changes in adiposity, adipose tissue inflammation, liver lipid content or AMPK phosphorylation of ACC

    Motif affinity and mass spectrometry proteomic approach for the discovery of cellular AMPK targets: identification of mitochondrial fission factor as a new AMPK substrate

    Get PDF
    AMP-activated protein kinase (AMPK) is a key cellular energy sensor and regulator of metabolic homeostasis. Although it is best known for its effects on carbohydrate and lipid metabolism, AMPK is implicated in diverse cellular processes, including mitochondrial biogenesis, autophagy, and cell growth and proliferation. To further our understanding of energy homeostasis through AMPK-dependent processes, the design and application of approaches to identify and characterise novel AMPK substrates are invaluable. Here, we report an affinity proteomicstrategy for the discovery and validation of AMPK targets using an antibody to isolate proteins containing the phospho-AMPK substrate recognition motif from hepatocytes that had been treated with pharmacological AMPK activators. We identified 57 proteins that were uniquely enriched in the activator-treated hepatocytes, but were absent in hepatocytes lacking AMPK. We focused on two candidates, cingulin and mitochondrial fission factor (MFF), and further characterised/validated them as AMPK-dependent targets by immunoblotting with phosphorylation site-specific antibodies. A small-molecule AMPK activator caused transient phosphorylation of endogenous cingulin at S137 in intestinal Caco2 cells. Multiple splice-variants of MFF appear to express in hepatocytes and we identified a common AMPK-dependent phospho-site (S129) in all the 3 predominant variants spanning the mass range and a short variant-specific site (S146). Collectively, our proteomic-based approach using a phospho-AMPK substrate antibody in combination with genetic models and selective AMPK activators will provide a powerful and reliable platform for identifying novel AMPK-dependent cellular targets

    Skeletal muscle AMPK is essential for the maintenance of FNDC5 expression

    Get PDF
    Fibronectin type III domain‐containing protein 5 (FNDC5) expression is controlled by the transcriptional co‐activator, peroxisome proliferator‐activated receptor gamma, coactivator 1 alpha (PGC1α). FNDC5 expression has been shown to be increased in muscle in response to endurance exercise in some but not all studies, therefore a greater understanding of the mechanisms controlling this process are needed. The AMP‐activated protein kinase (AMPK) is activated by exercise in an intensity dependent manner and is an important regulator of PGC1α activity; therefore, we explored the role of AMPK in the regulation of FNDC5 using AMPK ÎČ1ÎČ2 double muscle‐null mice (AMPK DMKO), which lack skeletal muscle AMPK activity. We found that FNDC5 expression is dramatically reduced in resting muscles of AMPK DMKO mice compared to wild‐type littermates. In wild‐type mice, activating phosphorylation of AMPK was elevated immediately post contraction and was abolished in muscle from AMPK DMKO mice. In contrast, PGC1α was increased in both wild‐type and AMPK DMKO mice 3 h post contraction but FNDC5 protein expression was not altered. Lastly, acute or chronic activation of AMPK with the pharmacological AMPK activator AICAR did not increase PGC1α or FNDC5 expression in muscle. These data indicate that skeletal muscle AMPK is required for the maintenance of basal FNDC5 expression

    Skeletal muscle ACC2 S212 phosphorylation is not required for the control of fatty acid oxidation during exercise

    Get PDF
    During submaximal exercise fatty acids are a predominant energy source for muscle contractions. An important regulator of fatty acid oxidation is acetyl‐CoA carboxylase (ACC), which exists as two isoforms (ACC1 and ACC2) with ACC2 predominating in skeletal muscle. Both ACC isoforms regulate malonyl‐CoA production, an allosteric inhibitor of carnitine palmitoyltransferase 1 (CPT‐1); the primary enzyme controlling fatty acyl‐CoA flux into mitochondria for oxidation. AMP‐activated protein kinase (AMPK) is a sensor of cellular energy status that is activated during exercise or by pharmacological agents such as metformin and AICAR. In resting muscle the activation of AMPK with AICAR leads to increased phosphorylation of ACC (S79 on ACC1 and S221 on ACC2), which reduces ACC activity and malonyl‐CoA; effects associated with increased fatty acid oxidation. However, whether this pathway is vital for regulating skeletal muscle fatty acid oxidation during conditions of increased metabolic flux such as exercise/muscle contractions remains unknown. To examine this we characterized mice lacking AMPK phosphorylation sites on ACC2 (S212 in mice/S221 in humans‐ACC2‐knock‐in [ACC2‐KI]) or both ACC1 (S79) and ACC2 (S212) (ACC double knock‐in [ACCD‐KI]) during submaximal treadmill exercise and/or ex vivo muscle contractions. We find that surprisingly, ACC2‐KI mice had normal exercise capacity and whole‐body fatty acid oxidation during treadmill running despite elevated muscle ACC2 activity and malonyl‐CoA. Similar results were observed in ACCD‐KI mice. Fatty acid oxidation was also maintained in muscles from ACC2‐KI mice contracted ex vivo. These findings indicate that pathways independent of ACC phosphorylation are important for regulating skeletal muscle fatty acid oxidation during exercise/muscle contractions

    Thienopyridone Drugs Are Selective Activators of AMP-Activated Protein Kinase ÎČ1-Containing Complexes

    Get PDF
    SummaryThe AMP-activated protein kinase (AMPK) is an αÎČÎł heterotrimer that plays a pivotal role in regulating cellular and whole-body metabolism. Activation of AMPK reverses many of the metabolic defects associated with obesity and type 2 diabetes, and therefore AMPK is considered a promising target for drugs to treat these diseases. Recently, the thienopyridone A769662 has been reported to directly activate AMPK by an unexpected mechanism. Here we show that A769662 activates AMPK by a mechanism involving the ÎČ subunit carbohydrate-binding module and residues from the Îł subunit but not the AMP-binding sites. Furthermore, A769662 exclusively activates AMPK heterotrimers containing the ÎČ1 subunit. Our findings highlight the regulatory role played by the ÎČ subunit in modulating AMPK activity and the possibility of developing isoform specific therapeutic activators of this important metabolic regulator

    The Na+/Glucose Cotransporter Inhibitor Canagliflozin Activates AMPK by Inhibiting Mitochondrial Function and Increasing Cellular AMP Levels

    Get PDF
    Canagliflozin, dapagliflozin and empagliflozin, all recently approved for treatment of Type 2 diabetes, were derived from the natural product phlorizin. They reduce hyperglycemia by inhibiting glucose re-uptake by SGLT2 in the kidney, without affecting intestinal glucose uptake by SGLT1. We now report that canagliflozin also activates AMP-activated protein kinase (AMPK), an effect also seen with phloretin (the aglycone breakdown product of phlorizin), but not to any significant extent with dapagliflozin, empagliflozin or phlorizin. AMPK activation occurred at canagliflozin concentrations measured in human plasma in clinical trials, and was caused by inhibition of Complex I of the respiratory chain, leading to increases in cellular AMP or ADP. Although canagliflozin also inhibited cellular glucose uptake independently of SGLT2, this did not account for AMPK activation. Canagliflozin also inhibited lipid synthesis, an effect that was absent in AMPK knockout cells and that required phosphorylation of ACC1 and/or ACC2 at the AMPK sites. Oral administration of canagliflozin activated AMPK in mouse liver, although not in muscle, adipose tissue or spleen. As phosphorylation of acetyl-CoA carboxylase by AMPK is known to lower liver lipid content, these data suggest a potential additional benefit of canagliflozin therapy compared to other SGLT2 inhibitors

    The autophagy initiator ULK1 sensitizes AMPK to allosteric drugs

    Get PDF
    AMP-activated protein kinase (AMPK) is a metabolic stress-sensing enzyme responsible for maintaining cellular energy homeostasis. Activation of AMPK by salicylate and the thienopyridone A-769662 is critically dependent on phosphorylation of Ser108 in the ÎČ1 regulatory subunit. Here, we show a possible role for Ser108 phosphorylation in cell cycle regulation and promotion of pro-survival pathways in response to energy stress. We identify the autophagy initiator Unc-51-like kinase 1 (ULK1) as a ÎČ1-Ser108 kinase in cells. Cellular ÎČ1-Ser108 phosphorylation by ULK1 was dependent on AMPK ÎČ-subunit myristoylation, metabolic stress associated with elevated AMP/ATP ratio, and the intrinsic energy sensing capacity of AMPK; features consistent with an AMP-induced myristoyl switch mechanism. We further demonstrate cellular AMPK signaling independent of activation loop Thr172 phosphorylation, providing potential insight into physiological roles for Ser108 phosphorylation. These findings uncover new mechanisms by which AMPK could potentially maintain cellular energy homeostasis independently of Thr172 phosphorylation
    • 

    corecore