278 research outputs found

    Transient simulations of the carbon and nitrogen dynamics in northern peatlands: from the Last Glacial Maximum to the 21st century

    Get PDF
    The development of northern high-latitude peatlands played an important role in the carbon (C) balance of the land biosphere since the Last Glacial Maximum (LGM). At present, carbon storage in northern peatlands is substantial and estimated to be 500 ± 100 Pg C (1 Pg C = 1015 g C). Here, we develop and apply a peatland module embedded in a dynamic global vegetation and land surface process model (LPX-Bern 1.0). The peatland module features a dynamic nitrogen cycle, a dynamic C transfer between peatland acrotelm (upper oxic layer) and catotelm (deep anoxic layer), hydrology- and temperature-dependent respiration rates, and peatland specific plant functional types. Nitrogen limitation down-regulates average modern net primary productivity over peatlands by about half. Decadal acrotelm-to-catotelm C fluxes vary between −20 and +50 g C m−2 yr−1 over the Holocene. Key model parameters are calibrated with reconstructed peat accumulation rates from peat-core data. The model reproduces the major features of the peat core data and of the observation-based modern circumpolar soil carbon distribution. Results from a set of simulations for possible evolutions of northern peat development and areal extent show that soil C stocks in modern peatlands increased by 365–550 Pg C since the LGM, of which 175–272 Pg C accumulated between 11 and 5 kyr BP. Furthermore, our simulations suggest a persistent C sequestration rate of 35–50 Pg C per 1000 yr in present-day peatlands under current climate conditions, and that this C sink could either sustain or turn towards a source by 2100 AD depending on climate trajectories as projected for different representative greenhouse gas concentration pathways

    Locally induced quantum interference in scanning gate experiments

    Full text link
    We present conductance measurements of a ballistic circular stadium influenced by a scanning gate. When the tip depletes the electron gas below, we observe very pronounced and regular fringes covering the entire stadium. The fringes correspond to transmitted modes in constrictions formed between the tip-induced potential and the boundaries of the stadium. Moving the tip and counting the fringes gives us exquisite control over the transmission of these constrictions. We use this control to form a quantum ring with a specific number of modes in each arm showing the Aharonov-Bohm effect in low-field magnetoconductance measurements.Comment: 10 pages, 4 figure

    Scanning-gate-induced effects and spatial mapping of a cavity

    Full text link
    Tailored electrostatic potentials are the foundation of scanning gate microscopy. We present several aspects of the tip-induced potential on the two-dimensional electron gas. First, we give methods on how to estimate the size of the tip-induced potential. Then, a ballistic cavity is formed and studied as a function of the bias-voltage of the metallic top gates and probed with the tip-induced potential. It is shown how the potential of the cavity changes by tuning the system to a regime where conductance quantization in the constrictions formed by the tip and the top gates occurs. This conductance quantization leads to a unprecedented rich fringe pattern over the entire structure. Finally, the effect of electrostatic screening of the metallic top gates is discussed.Comment: 10 pages, 6 figure

    Scanning gate experiments: from strongly to weakly invasive probes

    Full text link
    An open resonator fabricated in a two-dimensional electron gas is used to explore the transition from strongly invasive scanning gate microscopy to the perturbative regime of weak tip-induced potentials. With the help of numerical simulations that faithfully reproduce the main experimental findings, we quantify the extent of the perturbative regime in which the tip-induced conductance change is unambiguously determined by properties of the unperturbed system. The correspondence between the experimental and numerical results is established by analyzing the characteristic length scale and the amplitude modulation of the conductance change. In the perturbative regime, the former is shown to assume a disorder-dependent maximum value, while the latter linearly increases with the strength of a weak tip potential.Comment: 11 pages, 7 figure

    Scaling of 1/f noise in tunable break-junctions

    Full text link
    We have studied the 1/f1/f voltage noise of gold nano-contacts in electromigrated and mechanically controlled break-junctions having resistance values RR that can be tuned from 10 Ω\Omega (many channels) to 10 kΩ\Omega (single atom contact). The noise is caused by resistance fluctuations as evidenced by the SVV2S_V\propto V^2 dependence of the power spectral density SVS_V on the applied DC voltage VV. As a function of RR the normalized noise SV/V2S_V/V^2 shows a pronounced cross-over from R3\propto R^3 for low-ohmic junctions to R1.5\propto R^{1.5} for high-ohmic ones. The measured powers of 3 and 1.5 are in agreement with 1/f1/f-noise generated in the bulk and reflect the transition from diffusive to ballistic transport

    Hypofractionated radiation therapy for breast cancer: Preferences amongst radiation oncologists in Europe – Results from an international survey

    Get PDF
    Background and purpose: We aimed to assess the prescription preference about hypofractionated radiation therapy (HFRT) for breast cancer (BC) patients amongst radiation oncologists (ROs) practicing in Europe and to identify restraints on HFRT utilisation. Materials and methods: An online survey was circulated amongst ROs in Europe through personal, RO and BC societies’ networks, from October 2019 to March 2020. The statistical analyses included descriptive statistics, chi-squared testing, and logistic regression analysis. Results: We received 412 responses from 44 countries. HFRT was chosen as the preferred schedule for whole breast irradiation (WBI) by 54.7% and for WBI with regional nodes irradiation (RNI) by 28.7% of the responding ROs. In the case of postmastectomy RT with or without reconstruction, HFRT was preferred by 21.1% and 29.6%, respectively. Overall, 69.2% of the responding ROs selected at least one factor influencing the decision to utilise HFRT, the most frequent of which included age (51.4%), RNI (46.9%), internal mammary lymph nodes irradiation (39.7%), BC stage (33.5%) and implant-based breast reconstruction (31.6%). ROs working in academic centres (odds ratio, (OR), 1.7; 95% confidence interval, (CI); 1.1–2.6, p = 0.019), practicing in Western Europe (OR, 4.2; 95%CI; 2.7–6.6, p 50% of clinical time to BC patients (OR, 2.5; 95%CI; 1.5–4.2, p = 0.001) more likely preferred HFRT. Conclusion: Although HFRT is recognised as a new standard, its implementation in routine RT clinical practice across Europe varies for numerous reasons. Better dissemination of evidence-based recommendations is advised to improve the level of awareness about this clinical indication

    Directed Evolution of Microorganisms for Engineered Living Materials

    Full text link
    Microorganisms can create engineered materials with exquisite structures and living functionalities. Although synthetic biology tools to genetically manipulate microorganisms continue to expand, the bottom-up rational design of engineered living materials still relies on prior knowledge of genotype-phenotype links for the function of interest. Here, we utilize a high-throughput directed evolution platform to enhance the fitness of whole microorganisms under selection pressure and identify novel genetic pathways to program the functionalities of engineered living materials. Using Komagataeibacter sucrofermentans as a model cellulose-producing microorganism, we show that our droplet-based microfluidic platform enables the directed evolution of these bacteria towards a small number of cellulose overproducers from an initial pool of 40'000 random mutants. Sequencing of the evolved strains reveals an unexpected link between the cellulose-forming ability of the bacteria and a gene encoding a protease complex responsible for protein turnover in the cell. The ability to enhance the fitness of microorganisms towards specific phenotypes and to discover new genotype-phenotype links makes this high-throughput directed evolution platform a promising tool for the development of the next generation of engineered living materials

    RF Discharge Mirror Cleaning for ITER Optical Diagnostics Using 60 MHz Very High Frequency

    Get PDF
    For the fusion reactor ITER, a mandatory monitor of the fusion device and plasma will be performed with optical diagnostic systems. For the metallic first mirrors, the recovery of the reflectivity losses due to dust deposition is proposed to be carried out for 14 different optical diagnostic systems by the plasma cleaning technique. In this work, we studied the influence of the electrode area on the electrode potential as a function of the applied power with a 60 MHz radio very high frequency source. Unshielded copper disks with different diameters were constructed to study the impact of the electrode area in the range of 90 cm2 to 1200 cm2, which corresponds to an Edge Thomson Scattering area ratio of 0.15 to 2. It was observed that the absolute value of the resulting bias decreased from 280 V to 15 V with the increase of the area for a given RF power. Moreover, the power consumption was reduced by 43 langid = english, keywords = End-of-Cleaning indicator,First mirror,ITER,Plasma cleanin
    corecore