33,776 research outputs found

    Comment on "Nonlinear current-voltage curves of gold quantum point contacts" [Appl. Phys. Lett. 87, 103104 (2005)]

    Full text link
    In a recent Letter [Appl. Phys. Lett. 87, 103104 (2005)], Yoshida et al. report that nonlinearities in current-voltage curves of gold quantum point contacts occur as a result of a shortening of the distance between electrodes at finite bias, presumably due to thermal expansion. For short wires, the electrode displacement induces a thickening of the wire, as well as nonlinearities of the IV curve, while the radius of long wires is left unchanged, thus resulting in a linear IV curve. We argue here that electron shell effects, which favor wires with certain "magic radii," prevent the thickening of long wires under compression, but have little effect on wires below a critical length.Comment: Version accepted for publication in Applied Physics Letter

    Percolation in the Sherrington-Kirkpatrick Spin Glass

    Full text link
    We present extended versions and give detailed proofs of results concerning percolation (using various sets of two-replica bond occupation variables) in Sherrington-Kirkpatrick spin glasses (with zero external field) that were first given in an earlier paper by the same authors. We also explain how ultrametricity is manifested by the densities of large percolating clusters. Our main theorems concern the connection between these densities and the usual spin overlap distribution. Their corollaries are that the ordered spin glass phase is characterized by a unique percolating cluster of maximal density (normally coexisting with a second cluster of nonzero but lower density). The proofs involve comparison inequalities between SK multireplica bond occupation variables and the independent variables of standard Erdos-Renyi random graphs.Comment: 18 page

    Fluctuational Instabilities of Alkali and Noble Metal Nanowires

    Full text link
    We introduce a continuum approach to studying the lifetimes of monovalent metal nanowires. By modelling the thermal fluctuations of cylindrical nanowires through the use of stochastic Ginzburg-Landau classical field theories, we construct a self-consistent approach to the fluctuation-induced `necking' of nanowires. Our theory provides quantitative estimates of the lifetimes for alkali metal nanowires in the conductance range 10 < G/G_0 < 100 (where G_0=2e^2/h is the conductance quantum), and allows us to account for qualitative differences in the conductance histograms of alkali vs. noble metal nanowires

    Nature vs. Nurture: Predictability in Low-Temperature Ising Dynamics

    Full text link
    Consider a dynamical many-body system with a random initial state subsequently evolving through stochastic dynamics. What is the relative importance of the initial state ("nature") vs. the realization of the stochastic dynamics ("nurture") in predicting the final state? We examined this question for the two-dimensional Ising ferromagnet following an initial deep quench from T=∞T=\infty to T=0T=0. We performed Monte Carlo studies on the overlap between "identical twins" raised in independent dynamical environments, up to size L=500L=500. Our results suggest an overlap decaying with time as t−θht^{-\theta_h} with θh=0.22±0.02\theta_h = 0.22 \pm 0.02; the same exponent holds for a quench to low but nonzero temperature. This "heritability exponent" may equal the persistence exponent for the 2D Ising ferromagnet, but the two differ more generally.Comment: 5 pages, 3 figures; new version includes results for nonzero temperatur

    Theory of metastability in simple metal nanowires

    Full text link
    Thermally induced conductance jumps of metal nanowires are modeled using stochastic Ginzburg-Landau field theories. Changes in radius are predicted to occur via the nucleation of surface kinks at the wire ends, consistent with recent electron microscopy studies. The activation rate displays nontrivial dependence on nanowire length, and undergoes first- or second-order-like transitions as a function of length. The activation barriers of the most stable structures are predicted to be universal, i.e., independent of the radius of the wire, and proportional to the square root of the surface tension. The reduction of the activation barrier under strain is also determined.Comment: 5 pages, 3 figure

    LDEF fiber-composite materials characterization

    Get PDF
    Degradation of a number of fiber/polymer composites located on the leading and trailing surfaces of LDEF where the atomic oxygen (AO) fluences ranged from 10(exp 22) to 10(exp 4) atoms/cm(sup 2), respectively, was observed and compared. While matrices of the composites on the leading edge generally exhibited considerable degradation and erosion-induced fragmentation, this 'asking' process was confined to the near surface regions because these degraded structures acted as a 'protective blanket' for deeper-lying regions. This finding leads to the conclusion that simple surface coatings can significantly retard AO and other combinations of degrading phenomena in low-Earth orbit. Micrometeoroid and debris particle impacts were not a prominent feature on the fiber composites studied and apparently do not contribute in a significant way to their degradation or alteration in low-Earth orbit

    The Role of Kinetic Energy Flux in the Convective Urca Process

    Get PDF
    The previous analysis of the convective Urca neutrino loss process in degenerate, convective, quasi-static, carbon-burning cores by Barkat and Wheeler omitted specific consideration of the role of the kinetic energy flux. The arguments of Barkat and Wheeler that steady-state composition gradients exist are correct, but chemical equilibrium does not result in net cooling. Barkat and Wheeler included a "work" term that effectively removed energy from the total energy budget that could only have come from the kinetic energy, which must remain positive. Consideration of the kinetic energy in the thermodynamics of the convective Urca process shows that the convective Urca neutrinos reduce the rate of increase of entropy that would otherwise be associated with the input of nuclear energy and slow down the convective current, but, unlike the "thermal" Urca process do not reduce the entropy or temperature.Comment: 16 pages, AAS LaTex, in press, Astrophysical Journal, September 20, Vol 52
    • …
    corecore