12,680 research outputs found
Numerical constraints on the model of stochastic excitation of solar-type oscillations
Analyses of a 3D simulation of the upper layers of a solar convective
envelope provide constraints on the physical quantities which enter the
theoretical formulation of a stochastic excitation model of solar p modes, for
instance the convective velocities and the turbulent kinetic energy spectrum.
These constraints are then used to compute the acoustic excitation rate for
solar p modes, P. The resulting values are found ~5 times larger than the
values resulting from a computation in which convective velocities and entropy
fluctuations are obtained with a 1D solar envelope model built with the
time-dependent, nonlocal Gough (1977) extension of the mixing length
formulation for convection (GMLT). This difference is mainly due to the assumed
mean anisotropy properties of the velocity field in the excitation region. The
3D simulation suggests much larger horizontal velocities compared to vertical
ones than in the 1D GMLT solar model. The values of P obtained with the 3D
simulation constraints however are still too small compared with the values
inferred from solar observations. Improvements in the description of the
turbulent kinetic energy spectrum and its depth dependence yield further
increased theoretical values of P which bring them closer to the observations.
It is also found that the source of excitation arising from the advection of
the turbulent fluctuations of entropy by the turbulent movements contributes ~
65-75 % to the excitation and therefore remains dominant over the Reynolds
stress contribution. The derived theoretical values of P obtained with the 3D
simulation constraints remain smaller by a factor ~3 compared with the solar
observations. This shows that the stochastic excitation model still needs to be
improved.Comment: 11 pages, 9 figures, accepted for publication in A&
Fisheries Management under Irreversible Investment: Does Stochasticity Matter?
We present a continuous, nonlinear, stochastic and dynamic model for capital investment in the exploitation of a renewable resource. Both the resource stock and capital stock are treated as state variables. The resource owner controls fishing effort and the investment rate in an optimal way. Biological stock growth and capital depreciation rate are stochastic in the model. We find that the stochastic resource should be managed conservatively. The capital utilization rate is found to be a non-increasing function of stochasticity. Investment could be either higher or lower depending on the interaction between the capital and the resource stocks. In general a stochastic capital depreciation rate has only weak influence on optimal management. In the long run, the steady state harvest for a stochastic resource becomes lower than the deterministic level.Physical capital; irreversible investment; stochastic growth; long-term sustainable optimal
Magnetohydrodynamic turbulence in warped accretion discs
Warped, precessing accretion discs appear in a range of astrophysical
systems, for instance the X-ray binary Her X-1 and in the active nucleus of
NGC4258. In a warped accretion disc there are horizontal pressure gradients
that drive an epicyclic motion. We have studied the interaction of this
epicyclic motion with the magnetohydrodynamic turbulence in numerical
simulations. We find that the turbulent stress acting on the epicyclic motion
is comparable in size to the stress that drives the accretion, however an
important ingredient in the damping of the epicyclic motion is its parametric
decay into inertial waves.Comment: to appear in the proceedings of the 20th Texas Symposium on
Relativistic Astrophysics, J. C. Wheeler & H. Martel (eds.
The response of a turbulent accretion disc to an imposed epicyclic shearing motion
We excite an epicyclic motion, whose amplitude depends on the vertical
position, , in a simulation of a turbulent accretion disc. An epicyclic
motion of this kind may be caused by a warping of the disc. By studying how the
epicyclic motion decays we can obtain information about the interaction between
the warp and the disc turbulence. A high amplitude epicyclic motion decays
first by exciting inertial waves through a parametric instability, but its
subsequent exponential damping may be reproduced by a turbulent viscosity. We
estimate the effective viscosity parameter, , pertaining to
such a vertical shear. We also gain new information on the properties of the
disc turbulence in general, and measure the usual viscosity parameter,
, pertaining to a horizontal (Keplerian) shear. We find that,
as is often assumed in theoretical studies, is approximately
equal to and both are much less than unity, for the field
strengths achieved in our local box calculations of turbulence. In view of the
smallness () of and we conclude
that for the timescale for diffusion
or damping of a warp is much shorter than the usual viscous timescale. Finally,
we review the astrophysical implications.Comment: 12 pages, 18 figures, MNRAS accepte
Simulations of Oscillation Modes of the Solar Convection Zone
We use the three-dimensional hydrodynamic code of Stein and Nordlund to
realistically simulate the upper layers of the solar convection zone in order
to study physical characteristics of solar oscillations. Our first result is
that the properties of oscillation modes in the simulation closely match the
observed properties. Recent observations from SOHO/MDI and GONG have confirmed
the asymmetry of solar oscillation line profiles, initially discovered by
Duvall et al. In this paper we compare the line profiles in the power spectra
of the Doppler velocity and continuum intensity oscillations from the SOHO/MDI
observations with the simulation. We also compare the phase differences between
the velocity and intensity data. We have found that the simulated line profiles
are asymmetric and have the same asymmetry reversal between velocity and
intensity as observed. The phase difference between the velocity and intensity
signals is negative at low frequencies and jumps in the vicinity of modes as is
also observed. Thus, our numerical model reproduces the basic observed
properties of solar oscillations, and allows us to study the physical
properties which are not observed.Comment: Accepted for publication in ApJ Letter
The Poisson-Boltzmann model for implicit solvation of electrolyte solutions: Quantum chemical implementation and assessment via Sechenov coefficients.
We present the theory and implementation of a Poisson-Boltzmann implicit solvation model for electrolyte solutions. This model can be combined with arbitrary electronic structure methods that provide an accurate charge density of the solute. A hierarchy of approximations for this model includes a linear approximation for weak electrostatic potentials, finite size of the mobile electrolyte ions, and a Stern-layer correction. Recasting the Poisson-Boltzmann equations into Euler-Lagrange equations then significantly simplifies the derivation of the free energy of solvation for these approximate models. The parameters of the model are either fit directly to experimental observables-e.g., the finite ion size-or optimized for agreement with experimental results. Experimental data for this optimization are available in the form of Sechenov coefficients that describe the linear dependence of the salting-out effect of solutes with respect to the electrolyte concentration. In the final part, we rationalize the qualitative disagreement of the finite ion size modification to the Poisson-Boltzmann model with experimental observations by taking into account the electrolyte concentration dependence of the Stern layer. A route toward a revised model that captures the experimental observations while including the finite ion size effects is then outlined. This implementation paves the way for the study of electrochemical and electrocatalytic processes of molecules and cluster models with accurate electronic structure methods
Giant Spin Relaxation Anisotropy in Zinc-Blende Heterostructures
Spin relaxation in-plane anisotropy is predicted for heterostructures based
on zinc-blende semiconductors. It is shown that it manifests itself especially
brightly if the two spin relaxation mechanisms (D'yakonov-Perel' and Rashba)
are comparable in efficiency. It is demonstrated that for the quantum well
grown along the [0 0 1] direction, the main axes of spin relaxation rate tensor
are [1 1 0] and [1 -1 0].Comment: 3 pages, NO figure
What Causes P-mode Asymmetry Reversal?
The solar acoustic p-mode line profiles are asymmetric. Velocity spectra have
more power on the low-frequency sides, whereas intensity profiles show the
opposite sense of asymmetry. Numerical simulations of the upper convection zone
have resonant p-modes with the same asymmetries and asymmetry reversal as the
observed modes. The temperature and velocity power spectra at optical depth
have the opposite asymmetry as is observed for the
intensity and velocity spectra. At a fixed geometrical depth, corresponding to
, however, the temperature and velocity spectra have the
same asymmetry. This indicates that the asymmetry reversal is produced by
radiative transfer effects and not by correlated noise.Comment: 16 pages, 10 figures, submitted to Astrophysical Journa
Weak Measurements of Light Chirality with a Plasmonic Slit
We examine, both experimentally and theoretically, an interaction of tightly
focused polarized light with a slit on a metal surface supporting
plasmon-polariton modes. Remarkably, this simple system can be highly sensitive
to the polarization of the incident light and offers a perfect
quantum-weak-measurement tool with a built-in post-selection in the
plasmon-polariton mode. We observe the plasmonic spin Hall effect in both
coordinate and momentum spaces which is interpreted as weak measurements of the
helicity of light with real and imaginary weak values determined by the input
polarization. Our experiment combines advantages of (i) quantum weak
measurements, (ii) near-field plasmonic systems, and (iii) high-numerical
aperture microscopy in employing spin-orbit interaction of light and probing
light chirality.Comment: 5 pages, 3 figure
- …