227 research outputs found

    A cross-linguistic evaluation of script-specific effects on fMRI lateralization in late second language readers

    Get PDF
    Behavioral and neuroimaging studies have provided evidence that reading is strongly left lateralized, and the degree of this pattern of functional lateralization can be indicative of reading competence. However, it remains unclear whether functional lateralization differs between the first (L1) and second (L2) languages in bilingual L2 readers. This question is particularly important when the particular script, or orthography, learned by the L2 readers is markedly different from their L1 script. In this study, we quantified functional lateralization in brain regions involved in visual word recognition for participants' L1 and L2 scripts, with a particular focus on the effects of L1–L2 script differences in the visual complexity and orthographic depth of the script. Two different groups of late L2 learners participated in an fMRI experiment using a visual one-back matching task: L1 readers of Japanese who learnt to read alphabetic English and L1 readers of English who learnt to read both Japanese syllabic Kana and logographic Kanji. The results showed weaker leftward lateralization in the posterior lateral occipital complex (pLOC) for logographic Kanji compared with syllabic and alphabetic scripts in both L1 and L2 readers of Kanji. When both L1 and L2 scripts were non-logographic, where symbols are mapped onto sounds, functional lateralization did not significantly differ between L1 and L2 scripts in any region, in any group. Our findings indicate that weaker leftward lateralization for logographic reading reflects greater requirement of the right hemisphere for processing visually complex logographic Kanji symbols, irrespective of whether Kanji is the readers' L1 or L2, rather than characterizing additional cognitive efforts of L2 readers. Finally, brain-behavior analysis revealed that functional lateralization for L2 visual word processing predicted L2 reading competency

    Spatial and temporal distribution of information processing in the human dorsal anterior cingulate cortex

    Get PDF
    The dorsal anterior cingulate cortex (dACC) is a key node in the human salience network. It has been ascribed motor, pain-processing and affective functions. However, the dynamics of information flow in this complex region and how it responds to inputs remain unclear and are difficult to study using non-invasive electrophysiology. The area is targeted by neurosurgery to treat neuropathic pain. During deep brain stimulation surgery, we recorded local field potentials from this region in humans during a decision-making task requiring motor output. We investigated the spatial and temporal distribution of information flow within the dACC. We demonstrate the existence of a distributed network within the anterior cingulate cortex where discrete nodes demonstrate directed communication following inputs. We show that this network anticipates and responds to the valence of feedback to actions. We further show that these network dynamics adapt following learning. Our results provide evidence for the integration of learning and the response to feedback in a key cognitive region

    Genome-wide association study of post-traumatic stress disorder reexperiencing symptoms in >165,000 US veterans.

    Get PDF
    Post-traumatic stress disorder (PTSD) is a major problem among military veterans and civilians alike, yet its pathophysiology remains poorly understood. We performed a genome-wide association study and bioinformatic analyses, which included 146,660 European Americans and 19,983 African Americans in the US Million Veteran Program, to identify genetic risk factors relevant to intrusive reexperiencing of trauma, which is the most characteristic symptom cluster of PTSD. In European Americans, eight distinct significant regions were identified. Three regions had values of P < 5 × 10-10: CAMKV; chromosome 17 closest to KANSL1, but within a large high linkage disequilibrium region that also includes CRHR1; and TCF4. Associations were enriched with respect to the transcriptomic profiles of striatal medium spiny neurons. No significant associations were observed in the African American cohort of the sample. Results in European Americans were replicated in the UK Biobank data. These results provide new insights into the biology of PTSD in a well-powered genome-wide association study

    Observation of a kilogram-scale oscillator near its quantum ground state

    Get PDF
    We introduce a novel cooling technique capable of approaching the quantum ground state of a kilogram-scale system—an interferometric gravitational wave detector. The detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) operate within a factor of 10 of the standard quantum limit (SQL), providing a displacement sensitivity of 10[superscript −18] m in a 100 Hz band centered on 150 Hz. With a new feedback strategy, we dynamically shift the resonant frequency of a 2.7 kg pendulum mode to lie within this optimal band, where its effective temperature falls as low as 1.4 μK, and its occupation number reaches about 200 quanta. This work shows how the exquisite sensitivity necessary to detect gravitational waves can be made available to probe the validity of quantum mechanics on an enormous mass scale.Alfred P. Sloan FoundationUnited States. National Aeronautics and Space AdministrationDavid & Lucile Packard FoundationResearch CorporationNational Science Foundation (U.S.

    Explaining Institutional Change: Why Elected Politicians Implement Direct Democracy

    Get PDF
    In existing models of direct democratic institutions, the median voter benefits, but representative politicians are harmed since their policy choices can be overridden. This is a puzzle, since representative politicians were instrumental in creating these institutions. I build a model of direct democracy that explains why a representative might benefit from tying his or her own hands in this way. The key features are (1) that voters are uncertain about their representative's preferences; (2) that direct and representative elections are complementary ways for voters to control outcomes. The model shows that some politicians benefit from the introduction of direct democracy, since they are more likely to survive representative elections: direct democracy credibly prevents politicians from realising extreme outcomes. Historical evidence from the introduction of the initiative, referendum and recall in America broadly supports the theory, which also explains two empirical results that have puzzled scholars: legislators are trusted less, but reelected more, in US states with direct democracy. I conclude by discussing the potential for incomplete information and signaling models to improve our understanding of institutional change more generally

    Crystallographic Evidence of Drastic Conformational Changes in the Active Site of a Flavin-Dependent

    Get PDF
    The soil actinomycete Kutzneria sp. 744 produces a class of highly decorated hexadepsipeptides, which represent a new chemical scaffold that has both antimicrobial and antifungal properties. These natural products, known as kutznerides, are created via nonribosomal peptide synthesis using various derivatized amino acids. The piperazic acid moiety contained in the kutzneride scaffold, which is vital for its antibiotic activity, has been shown to derive from the hydroxylated product of l-ornithine, l-N5-hydroxyornithine. The production of this hydroxylated species is catalyzed by the action of an FAD- and NAD(P)H-dependent N-hydroxylase known as KtzI. We have been able to structurally characterize KtzI in several states along its catalytic trajectory, and by pairing these snapshots with the biochemical and structural data already available for this enzyme class, we propose a structurally based reaction mechanism that includes novel conformational changes of both the protein backbone and the flavin cofactor. Further, we were able to recapitulate these conformational changes in the protein crystal, displaying their chemical competence. Our series of structures, with corroborating biochemical and spectroscopic data collected by us and others, affords mechanistic insight into this relatively new class of flavin-dependent hydroxylases and adds another layer to the complexity of flavoenzymes.National Center for Research Resources (U.S.) (P41RR012408)National Institute of General Medical Sciences (U.S.) (P41GM103473

    The Zwicky Transient Facility: System Overview, Performance, and First Results

    Get PDF
    The Zwicky Transient Facility (ZTF) is a new optical time-domain survey that uses the Palomar 48 inch Schmidt telescope. A custom-built wide-field camera provides a 47 deg 2 field of view and 8 s readout time, yielding more than an order of magnitude improvement in survey speed relative to its predecessor survey, the Palomar Transient Factory. We describe the design and implementation of the camera and observing system. The ZTF data system at the Infrared Processing and Analysis Center provides near-real-time reduction to identify moving and varying objects. We outline the analysis pipelines, data products, and associated archive. Finally, we present on-sky performance analysis and first scientific results from commissioning and the early survey. ZTF’s public alert stream will serve as a useful precursor for that of the Large Synoptic Survey Telescope
    • …
    corecore