23,104 research outputs found

    Enhancing Social Connectedness in Anxiety and Depression Through Amplification of Positivity: Preliminary Treatment Outcomes and Process of Change.

    Get PDF
    BackgroundAnxiety and depressive disorders are often characterized by perceived social disconnection, yet evidence-based treatments produce only modest improvements in this domain. The well-established link between positive affect (PA) and social connectedness suggests that directly targeting PA in treatment may be valuable.MethodA secondary analysis of a waitlist-controlled trial (N=29) was conducted to evaluate treatment response and process of change in social connectedness within a 10-session positive activity intervention protocol-Amplification of Positivity (AMP)-designed to increase PA in individuals seeking treatment for anxiety or depression (ClinicalTrials.gov Identifier: NCT02330627). Perceived social connectedness and PA/negative affect (NA) were assessed throughout treatment. Time-lagged multilevel mediation models examined the process of change in affect and connectedness throughout treatment.ResultsThe AMP group displayed significantly larger improvements in social connectedness from pre- to post-treatment compared to waitlist; improvements were maintained through 6-month follow-up. Within the AMP group, increases in PA and decreases in NA both uniquely predicted subsequent increases in connectedness throughout treatment. However, experiencing heightened NA throughout treatment attenuated the effect of changes in PA on connectedness. Improvements in connectedness predicted subsequent increases in PA, but not changes in NA.ConclusionsThese preliminary findings suggest that positive activity interventions may be valuable for enhancing social connectedness in individuals with clinically impairing anxiety or depression, possibly through both increasing positive emotions and decreasing negative emotions

    Program on stimulating operational private sector use of Earth observation satellite information

    Get PDF
    Ideas for new businesses specializing in using remote sensing and computerized spatial data systems were developd. Each such business serves as an 'information middleman', buying raw satellite or aircraft imagery, processing these data, combining them in a computer system with customer-specific information, and marketing the resulting information products. Examples of the businesses the project designed are: (1) an agricultural facility site evaluation firm; (2) a mass media grocery price and supply analyst and forecaster; (3) a management service for privately held woodlots; (4) a brokerage for insulation and roofing contractors, based on infrared imagery; (5) an expanded real estate information service. In addition, more than twenty-five other commercially attractive ideas in agribusiness, forestry, mining, real estate, urban planning and redevelopment, and consumer information were created. The commercial feasibility of the five business was assessed. This assessment included market surveys, revenue projections, cost analyses, and profitability studies. The results show that there are large and enthusiastic markets willing to pay for the services these businesses offer, and that the businesses could operate profitably

    Estimating deformations of isotropic Gaussian random fields on the plane

    Full text link
    This paper presents a new approach to the estimation of the deformation of an isotropic Gaussian random field on R2\mathbb{R}^2 based on dense observations of a single realization of the deformed random field. Under this framework we investigate the identification and estimation of deformations. We then present a complete methodological package--from model assumptions to algorithmic recovery of the deformation--for the class of nonstationary processes obtained by deforming isotropic Gaussian random fields.Comment: Published in at http://dx.doi.org/10.1214/009053607000000893 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Polarization and Charge Transfer in the Hydration of Chloride Ions

    Full text link
    A theoretical study of the structural and electronic properties of the chloride ion and water molecules in the first hydration shell is presented. The calculations are performed on an ensemble of configurations obtained from molecular dynamics simulations of a single chloride ion in bulk water. The simulations utilize the polarizable AMOEBA force field for trajectory generation, and MP2-level calculations are performed to examine the electronic structure properties of the ions and surrounding waters in the external field of more distant waters. The ChelpG method is employed to explore the effective charges and dipoles on the chloride ions and first-shell waters. The Quantum Theory of Atoms in Molecules (QTAIM) is further utilized to examine charge transfer from the anion to surrounding water molecules. From the QTAIM analysis, 0.2 elementary charges are transferred from the ion to the first-shell water molecules. The default AMOEBA model overestimates the average dipole moment magnitude of the ion compared with the estimated quantum mechanical value. The average magnitude of the dipole moment of the water molecules in the first shell treated at the MP2 level, with the more distant waters handled with an AMOEBA effective charge model, is 2.67 D. This value is close to the AMOEBA result for first-shell waters (2.72 D) and is slightly reduced from the bulk AMOEBA value (2.78 D). The magnitude of the dipole moment of the water molecules in the first solvation shell is most strongly affected by the local water-water interactions and hydrogen bonds with the second solvation shell, rather than by interactions with the ion.Comment: Slight revision, in press at J. Chem. Phy

    The Convective Urca Process with Implicit Two-Dimensional Hydrodynamics

    Full text link
    Consideration of the role of the convective flux in the thermodymics of the convective Urca neutrino loss process in degenerate, convective, quasi-static, carbon-burning cores shows that the convective Urca process slows down the convective current around the Urca-shell, but, unlike the "thermal" Urca process, does not reduce the entropy or temperature for a given convective volume. Here we demonstrate these effects with two-dimensional numerical hydrodynamical calculations. These two-dimensional implicit hydrodynamics calculations invoke an artificial speeding up of the nuclear and weak rates. They should thus be regarded as indicative, but still qualitative. We find that, compared to a case with no Urca-active nuclei, the case with Urca effects leads to a higher entropy in the convective core because the energy released by nuclear burning is confined to a smaller volume by the effective boundary at the Urca shell. All else being equal, this will tend to accelerate the progression to dynamical runaway. We discuss the open issues regarding the impact of the convective Urca process on the evolution to the "smoldering phase" and then to dynamical runaway.Comment: 22 pages, 11 figures, accepted for publication in the Astrophysical Journa

    Solar Oscillations and Convection: II. Excitation of Radial Oscillations

    Full text link
    Solar p-mode oscillations are excited by the work of stochastic, non-adiabatic, pressure fluctuations on the compressive modes. We evaluate the expression for the radial mode excitation rate derived by Nordlund and Stein (Paper I) using numerical simulations of near surface solar convection. We first apply this expression to the three radial modes of the simulation and obtain good agreement between the predicted excitation rate and the actual mode damping rates as determined from their energies and the widths of their resolved spectral profiles. We then apply this expression for the mode excitation rate to the solar modes and obtain excellent agreement with the low l damping rates determined from GOLF data. Excitation occurs close to the surface, mainly in the intergranular lanes and near the boundaries of granules (where turbulence and radiative cooling are large). The non-adiabatic pressure fluctuations near the surface are produced by small instantaneous local imbalances between the divergence of the radiative and convective fluxes near the solar surface. Below the surface, the non-adiabatic pressure fluctuations are produced primarily by turbulent pressure fluctuations (Reynolds stresses). The frequency dependence of the mode excitation is due to effects of the mode structure and the pressure fluctuation spectrum. Excitation is small at low frequencies due to mode properties -- the mode compression decreases and the mode mass increases at low frequency. Excitation is small at high frequencies due to the pressure fluctuation spectrum -- pressure fluctuations become small at high frequencies because they are due to convection which is a long time scale phenomena compared to the dominant p-mode periods.Comment: Accepted for publication in ApJ (scheduled for Dec 10, 2000 issue). 17 pages, 27 figures, some with reduced resolution -- high resolution versions available at http://www.astro.ku.dk/~aake/astro-ph/0008048

    runt homology domain transcription factors (Runx, Cbfa, and AML) mediate repression of the bone sialoprotein promoter: evidence for promoter context-dependent activity of Cbfa proteins

    Get PDF
    Expression of the bone sialoprotein (BSP) gene, a marker of bone formation, is largely restricted to cells in mineralized tissues. Recent studies have shown that the Cbfa1 (also known as Runx2, AML-3, and PEBP2alphaA) transcription factor supports commitment and differentiation of progenitor cells to hypertrophic chondrocytes and osteoblasts. This study addresses the functional involvement of Cbfa sites in expression of the Gallus BSP gene. Gel mobility shift analyses with nuclear extracts from ROS 17/2.8 osteoblastic cells revealed that multiple Cbfa consensus sequences are functional Cbfa DNA binding sites. Responsiveness of the 1.2-kb Gallus BSP promoter to Cbfa factors Cbfa1, Cbfa2, and Cbfa3 was assayed in osseous and nonosseous cells. Each of the Cbfa factors mediated repression of the wild-type BSP promoter, in contrast to their well known activation of various hematopoietic and skeletal phenotypic genes. Suppression of BSP by Cbfa factors was not observed in BSP promoters in which Cbfa sites were deleted or mutated. Expression of the endogenous BSP gene in Gallus osteoblasts was similarly downregulated by forced expression of Cbfa factors. Our data indicate that Cbfa repression of the BSP promoter does not involve the transducin-like enhancer (TLE) proteins. Neither coexpression of TLE1 or TLE2 nor the absence of the TLE interaction motif of Cbfa1 (amino acids 501 to 513) influenced repressor activity. However, removal of the C terminus of Cbfa1 (amino acids 362 to 513) relieved suppression of the BSP promoter. Our results, together with the evolutionary conservation of the seven Cbfa sites in the Gallus and human BSP promoters, suggest that suppressor activity by Cbfa is of significant physiologic consequence and may contribute to spatiotemporal expression of BSP during bone development

    On the Efficient Calculation of a Linear Combination of Chi-Square Random Variables with an Application in Counting String Vacua

    Full text link
    Linear combinations of chi square random variables occur in a wide range of fields. Unfortunately, a closed, analytic expression for the pdf is not yet known. As a first result of this work, an explicit analytic expression for the density of the sum of two gamma random variables is derived. Then a computationally efficient algorithm to numerically calculate the linear combination of chi square random variables is developed. An explicit expression for the error bound is obtained. The proposed technique is shown to be computationally efficient, i.e. only polynomial in growth in the number of terms compared to the exponential growth of most other methods. It provides a vast improvement in accuracy and shows only logarithmic growth in the required precision. In addition, it is applicable to a much greater number of terms and currently the only way of computing the distribution for hundreds of terms. As an application, the exponential dependence of the eigenvalue fluctuation probability of a random matrix model for 4d supergravity with N scalar fields is found to be of the asymptotic form exp(-0.35N).Comment: 21 pages, 19 figures. 3rd versio
    corecore