31 research outputs found

    Temperature-Dependent Site Control of InAs/GaAs (001) Quantum Dots Using a Scanning Tunneling Microscopy Tip During Growth

    Get PDF
    Site-controlled InAs nano dots were successfully fabricated by a STMBE system (in situ scanning tunneling microscopy during molecular beam epitaxy growth) at substrate temperatures from 50 to 430°C. After 1.5 ML of the InAs wetting layer (WL) growth by ordinal Stranski–Krastanov dot fabrication procedures, we applied voltage at particular sites on the InAs WL, creating the site where In atoms, which were migrating on the WL, favored to congregate. At 240°C, InAs nano dots (width: 20–40 nm, height: 1.5–2.0 nm) were fabricated. At 430°C, InAs nano dots (width: 16–20 nm, height: 0.75–1.5 nm) were also fabricated. However, these dots were remained at least 40 s and collapsed less than 1000 s. Then, we fabricated InAs nano dots (width: 24–150 nm, height: 2.8–28 nm) at 300°C under In and As4 irradiations. These were not collapsed and considered to high crystalline dots

    The influence of surface stress on the equilibrium shape of strained quantum dots

    Full text link
    The equilibrium shapes of InAs quantum dots (i.e., dislocation-free, strained islands with sizes >= 10,000 atoms) grown on a GaAs (001) substrate are studied using a hybrid approach which combines density functional theory (DFT) calculations of microscopic parameters, surface energies, and surface stresses with elasticity theory for the long-range strain fields and strain relaxations. In particular we report DFT calculations of the surface stresses and analyze the influence of the strain on the surface energies of the various facets of the quantum dot. The surface stresses have been neglected in previous studies. Furthermore, the influence of edge energies on the island shapes is briefly discussed. From the knowledge of the equilibrium shape of these islands, we address the question whether experimentally observed quantum dots correspond to thermal equilibrium structures or if they are a result of the growth kinetics.Comment: 7 pages, 8 figures, submitted to Phys. Rev. B (February 2, 1998). Other related publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm
    corecore