23 research outputs found

    XenofilteR: computational deconvolution of mouse and human reads in tumor xenograft sequence data.

    Get PDF
    BACKGROUND: Mouse xenografts from (patient-derived) tumors (PDX) or tumor cell lines are widely used as models to study various biological and preclinical aspects of cancer. However, analyses of their RNA and DNA profiles are challenging, because they comprise reads not only from the grafted human cancer but also from the murine host. The reads of murine origin result in false positives in mutation analysis of DNA samples and obscure gene expression levels when sequencing RNA. However, currently available algorithms are limited and improvements in accuracy and ease of use are necessary. RESULTS: We developed the R-package XenofilteR, which separates mouse from human sequence reads based on the edit-distance between a sequence read and reference genome. To assess the accuracy of XenofilteR, we generated sequence data by in silico mixing of mouse and human DNA sequence data. These analyses revealed that XenofilteR removes > 99.9% of sequence reads of mouse origin while retaining human sequences. This allowed for mutation analysis of xenograft samples with accurate variant allele frequencies, and retrieved all non-synonymous somatic tumor mutations. CONCLUSIONS: XenofilteR accurately dissects RNA and DNA sequences from mouse and human origin, thereby outperforming currently available tools. XenofilteR is open source and available at https://github.com/PeeperLab/XenofilteR

    EZH2 and BMI1 inversely correlate with prognosis and TP53 mutation in breast cancer

    Get PDF
    Introduction PolycombGroup (PcG) proteins maintain gene repression through histone modifications and have been implicated in stem cell regulation and cancer. EZH2 is part of Polycomb Repressive Complex 2 (PRC2) and trimethylates H3K27. This histone mark recruits the BMI1-containing PRC1 that silences the genes marked by PRC2. Based on their role in stem cells, EZH2 and BMI1 have been predicted to contribute to a poor outcome for cancer patients. Methods We have analysed the expression of EZH2 and BMI1 in a well-characterised dataset of 295 human breast cancer samples. Results Interestingly, although EZH2 overexpression correlates with a poor prognosis in breast cancer, BMI1 overexpression correlates with a good outcome. Although this may reflect transformation of different cell types, we also observed a functional difference. The PcG-target genes INK4A and ARF are not expressed in tumours with high BMI1, but they are expressed in tumours with EZH2 overexpression. ARF expression results in tumour protein P53 (TP53) activation, and we found a significantly higher proportion of TP53 mutations in tumours with high EZH2. This may explain why tumours with high EZH2 respond poorly to therapy, in contrast to tumours with high BMI1. Conclusions Overall, our data highlight that whereas EZH2 and BMI1 may function in a 'linear' pathway in normal development, their overexpression has different functional consequences for breast tumourigenesi

    Event reconstruction for KM3NeT/ORCA using convolutional neural networks

    Get PDF
    The KM3NeT research infrastructure is currently under construction at two locations in the Mediterranean Sea. The KM3NeT/ORCA water-Cherenkov neutrino detector off the French coast will instrument several megatons of seawater with photosensors. Its main objective is the determination of the neutrino mass ordering. This work aims at demonstrating the general applicability of deep convolutional neural networks to neutrino telescopes, using simulated datasets for the KM3NeT/ORCA detector as an example. To this end, the networks are employed to achieve reconstruction and classification tasks that constitute an alternative to the analysis pipeline presented for KM3NeT/ORCA in the KM3NeT Letter of Intent. They are used to infer event reconstruction estimates for the energy, the direction, and the interaction point of incident neutrinos. The spatial distribution of Cherenkov light generated by charged particles induced in neutrino interactions is classified as shower- or track-like, and the main background processes associated with the detection of atmospheric neutrinos are recognized. Performance comparisons to machine-learning classification and maximum-likelihood reconstruction algorithms previously developed for KM3NeT/ORCA are provided. It is shown that this application of deep convolutional neural networks to simulated datasets for a large-volume neutrino telescope yields competitive reconstruction results and performance improvements with respect to classical approaches

    Event reconstruction for KM3NeT/ORCA using convolutional neural networks

    Get PDF
    The KM3NeT research infrastructure is currently under construction at two locations in the Mediterranean Sea. The KM3NeT/ORCA water-Cherenkov neutrino de tector off the French coast will instrument several megatons of seawater with photosensors. Its main objective is the determination of the neutrino mass ordering. This work aims at demonstrating the general applicability of deep convolutional neural networks to neutrino telescopes, using simulated datasets for the KM3NeT/ORCA detector as an example. To this end, the networks are employed to achieve reconstruction and classification tasks that constitute an alternative to the analysis pipeline presented for KM3NeT/ORCA in the KM3NeT Letter of Intent. They are used to infer event reconstruction estimates for the energy, the direction, and the interaction point of incident neutrinos. The spatial distribution of Cherenkov light generated by charged particles induced in neutrino interactions is classified as shower-or track-like, and the main background processes associated with the detection of atmospheric neutrinos are recognized. Performance comparisons to machine-learning classification and maximum-likelihood reconstruction algorithms previously developed for KM3NeT/ORCA are provided. It is shown that this application of deep convolutional neural networks to simulated datasets for a large-volume neutrino telescope yields competitive reconstruction results and performance improvements with respect to classical approaches

    Showering from high-energy cosmic rays

    No full text
    In particle physics a ‘shower’ is the avalanche of secondary particles produced by an incoming particle with high energy. This production requires the interaction with mass. A shower produced by high-energy cosmic rays usually covers a wide area, on the order of a square kilometer. The secondary particles can be observed by using scintillators. In view of the large area affected and the relatively simple equipment needed, this is an ideal project to involve high-school students and their teachers. Showering can also be observed indoors, on a muchsmaller scale

    The HERMES silicon project - The radiation protection system

    No full text
    The HERMES-detector has recently been upgraded with a silicon detector called the Lambda Wheels. This is the first detector following the interaction region. It consists of two disks of silicon detectors close to the beamline. This location makes it vulnerable to increased radiation levels which may be caused by beam instabilities. The Lambda Wheel detector, therefore, contains a system to detect these instabilities. This additional system triggers a kicker which dumps the HERA-lepton beam when the radiation level becomes too high. This contribution describes the radiation monitor which consists of two sets of three ionization chambers each, and the data-acquisition system which reads them out. The system has been installed and is operational since the summer of 2001. The HERA-accelerator was being commissioned after an upgrade during this time and several kinds of beam instabilities were observed with this protection system. The characteristics of some events will be described. © 2003 Elsevier B.V. All rights reserved.SCOPUS: cp.jinfo:eu-repo/semantics/publishe
    corecore