59 research outputs found

    Las Quenopodiáceas de la Provincia de La Pampa

    Get PDF
    In this contribution the whole genera and species of the Chenopodiaceae family which grows spontaneously in this province, are listed. This family is represented by 12 genera with 38 species. Keys for the identification of the genera and species are included and a short description of each genus is given. Distribution, origin diffusion in La Pampa and usefulness of each species are given. 25 species are illustrated.Manuscrito aceptado el 7 de mayo de 1986.En esta contribución se enumeran los géneros y las especies de la familia Chenopodiaceae que viven espontáneamente en la provincia de La Pampa. Argentina. Esta familia está representada por 12 géneros con 38 especies. Se incluyen claves para identificar los géneros y las especies de cada género y se da una breve descripción de cada uno. Se dan características. distribución, origen y difusión en La Pampa y utilidad de cada especie. Se ilustran 25 especie

    Las Euforbiaceas (Euphorbiaceae juss.) nativas, naturalizadas y adventicias de la provincia de La Pampa, República Argentina

    Get PDF
    In this contribution the whole genera and species of the Euphorbiaceae family which grows spontaneously in the Province of La Pampa, Argentine, are listed. This family is represented by 8 genera with 23 species. Keys for the identification of the genera and species are included. A short description, distribution, origin and diffusion in La Pampa of each species are given and 18 species are illustrated.En esta contribución se enumeran los géneros y las especies de la familia Euphorbiaceae que viven espontáneamente en la Provincia de La Pampa, República Argentina. Representan a esta familia 8 géneros con 23 especies. Se incluyen claves para la diferenciación de las entidades, se describen brevemente los géneros y las especies y se da información sobre el área de origen y la distribución conocida; se ilustran 18 de las especies estudiadas

    Las Verbenáceas (Verbenaceae J. St.-Hil.) de la Provincia de La Pampa, Argentina

    Get PDF
    In this contribution the whole genera and species of the VeroensC6B9 family which grows spontaneously in the Province of La Pampa, Argentine, are Iisted. This family is represented by10 genera with 29 species. Keys for the identification of the genera and species are included. A short description, the synonymy, the popular names, distribution and diffusion in La Pampa, and the studied exemplars, of each specie is given.En esta contribución se enumeran los géneros y las especies de la familia VeroenBc9B9 J. St.-HiI. que viven espontáneamente en la Provincia de La Pampa. Esta familia está representada por 10 géneros con 29 especies. Se incluyen claves para la diferenciación de los taxones, se describen los géneros y las especies, se da sinonimia, nombres vulgares, ICONOGRAFIA e Información sobre el origen y la distribución conocida de cada taxón y sobre su difusión en esta provincia. Se incluye la nómina de ejemplares estudiados

    Genotype imputation accuracy in a F2 pig population using high density and low density SNP panels

    Get PDF
    Background: F2 resource populations have been used extensively to map QTL segregating between pig breeds. A limitation associated with the use of these resource populations for fine mapping of QTL is the reduced number of founding individuals and recombinations of founding haplotypes occurring in the population. These limitations, however, become advantageous when attempting to impute unobserved genotypes using within family segregation information. A trade-off would be to re-type F2 populations using high density SNP panels for founding individuals and low density panels (tagSNP) in F2 individuals followed by imputation. Subsequently a combined meta-analysis of several populations would provide adequate power and resolution for QTL mapping, and could be achieved at relatively low cost. Such a strategy allows the wealth of phenotypic information that has previously been obtained on experimental resource populations to be further mined for QTL identification. In this study we used experimental and simulated high density genotypes (HD-60K) from an F2 cross to estimate imputation accuracy under several genotyping scenarios. Results: Selection of tagSNP using physical distance or linkage disequilibrium information produced similar imputation accuracies. In particular, tagSNP sets averaging 1 SNP every 2.1 Mb (1,200 SNP genome-wide) yielded imputation accuracies (IA) close to 0.97. If instead of using custom panels, the commercially available 9K chip is used in the F2, IA reaches 0.99. In order to attain such high imputation accuracy the F0 and F1 generations should be genotyped at high density. Alternatively, when only the F0 is genotyped at HD, while F1 and F2 are genotyped with a 9K panel, IA drops to 0.90. Conclusions: Combining 60K and 9K panels with imputation in F2 populations is an appealing strategy to re-genotype existing populations at a fraction of the cost.Fil: Gualdron Duarte, Jose Luis. Michigan State University; Estados Unidos. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bates, Ronald O.. Michigan State University; Estados UnidosFil: Ernst, Catherine W.. Michigan State University; Estados UnidosFil: Raney, Nancy E.. Michigan State University; Estados UnidosFil: Cantet, Rodolfo Juan Carlos. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Steibel, Juan P.. Michigan State University; Estados Unido

    Nombres vulgares de las plantas de la provincia de La Pampa

    Get PDF
    Nombres vulgares de las plantas de la provincia de La Pamp

    Las Umbelíferas (Umbelliferae) nativas, naturalizadas y adventicias de la Provincia de La Pampa, República Argentina

    Get PDF
    In this contribution the whole genera and species of the Umbelliferse Juss. family which grows spontaneously in the Province of La Pampa, Argentine, are listed. This family is represented by 21 genera with 30 species. Keys for the identification of the genera and species are Included. A short description, distribution, origin and diffusion in La Pampa of each specie is attached.En esta contribución se enumeran los géneros y las especies de la familia Umbelllferae Juss. que viven espontáneamente en la Provincia de La Pampa. Esta familia esté  representada por 21 géneros con 30 especies. Se Incluyen claves para la diferenciación de los taxones. se describen los géneros y las especies y se da información sobre el origen y la distribución conocida

    Agregados al catálogo de las plantas naturalizadas y adventicias de la provincia de La Pampa, Argentina

    Get PDF
    In this contribution 23 species of naturalized and adventive plants, are cited for first time tor La Pampa. The synonymy, a short description, the distribution, and the dispersal forms are given. The iconography and a boucher are included. A Iist of 13 species who were cited for J. Williamson (1967) with the iconography and a voucher, is attached.En esta contribución se enumeran 23 especies que se citan por primera vez como plantas naturalizadas o adventicias, que viven en la Provincia de La Pampa. Se da sinonimia, una breve descripción, la distribución y la forma de dispersión. Se incluye además la iconografía y se cita un ejemplar de herbario. Se agrega un listado de 13 especies que fueron citadas por J. Williamson (1967) con su iconografía y un ejemplar de referencia

    Application of alternative models to identify QTL for growth traits in an F2 Duroc x Pietrain pig resource population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A variety of analysis approaches have been applied to detect quantitative trait loci (QTL) in experimental populations. The initial genome scan of our Duroc x Pietrain F<sub>2 </sub>resource population included 510 F<sub>2 </sub>animals genotyped with 124 microsatellite markers and analyzed using a line-cross model. For the second scan, 20 additional markers on 9 chromosomes were genotyped for 954 F<sub>2 </sub>animals and 20 markers used in the first scan were genotyped for 444 additional F<sub>2 </sub>animals. Three least-squares Mendelian models for QTL analysis were applied for the second scan: a line-cross model, a half-sib model, and a combined line-cross and half-sib model.</p> <p>Results</p> <p>In total, 26 QTL using the line-cross model, 12 QTL using the half-sib model and 3 additional QTL using the combined line-cross and half-sib model were detected for growth traits with a 5% false discovery rate (FDR) significance level. In the line-cross analysis, highly significant QTL for fat deposition at 10-, 13-, 16-, 19-, and 22-wk of age were detected on SSC6. In the half-sib analysis, a QTL for loin muscle area at 19-wk of age was detected on SSC7 and QTL for 10th-rib backfat at 19- and 22-wk of age were detected on SSC15.</p> <p>Conclusions</p> <p>Additional markers and animals contributed to reduce the confidence intervals and increase the test statistics for QTL detection. Different models allowed detection of new QTL which indicated differing frequencies for alternative alleles in parental breeds.</p

    Rapid screening for phenotype-genotype associations by linear transformations of genomic evaluations

    Get PDF
    Background: Currently, association studies are analysed using statistical mixed models, with marker effects estimated by a linear transformation of genomic breeding values. The variances of marker effects are needed when performing the tests of association. However, approaches used to estimate the parameters rely on a prior variance or on a constant estimate of the additive variance. Alternatively, we propose a standardized test of association using the variance of each marker effect, which generally differ among each other. Random breeding values from a mixed model including fixed effects and a genomic covariance matrix are linearly transformed to estimate the marker effects. Results: The standardized test was neither conservative nor liberal with respect to type I error rate (false-positives), compared to a similar test using Predictor Error Variance, a method that was too conservative. Furthermore, genomic predictions are solved efficiently by the procedure, and the p-values are virtually identical to those calculated from tests for one marker effect at a time. Moreover, the standardized test reduces computing time and memory requirements. The following steps are used to locate genome segments displaying strong association. The marker with the highest − log(p-value) in each chromosome is selected, and the segment is expanded one Mb upstream and one Mb downstream of the marker. A genomic matrix is calculated using the information from those markers only, which is used as the variance-covariance of the segment effects in a model that also includes fixed effects and random genomic breeding values. The likelihood ratio is then calculated to test for the effect in every chromosome against a reduced model with fixed effects and genomic breeding values. In a case study with pigs, a significant segment from chromosome 6 explained 11% of total genetic variance. Conclusions: The standardized test of marker effects using their own variance helps in detecting specific genomic regions involved in the additive variance, and in reducing false positives. Moreover, genome scanning of candidate segments can be used in meta-analyses of genome-wide association studies, as it enables the detection of specific genome regions that affect an economically relevant trait when using multiple populations.Fil: Gualdron Duarte, Jose Luis. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cantet, Rodolfo Juan Carlos. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bates, Ronald O.. Michigan State University; Estados UnidosFil: Ernst, Catherine W.. Michigan State University; Estados UnidosFil: Raney, Nancy E.. Michigan State University; Estados UnidosFil: Steibel, Juan P.. Michigan State University; Estados Unido
    corecore