4 research outputs found

    Influence of gas discharge parameters on emissions from a dielectric barrier discharge excited argon excimer lamp

    Get PDF
    The original publication is available at http://www.sajs.co.za/A dielectric barrier discharge excited neutral argon (Ar I) excimer lamp has been developed and characterised. The aim of this study was to develop an excimer lamp operating at atmospheric pressure that can replace mercury lamps and vacuum equipment used in the sterilisation of medical equipment and in the food industry. The effects of discharge gas pressure, flow rate, excitation frequency and pulse width on the intensity of the Ar I vacuum ultraviolet (VUV) emission at 126 nm and near infrared (NIR) lines at 750.4 nm and 811.5 nm have been investigated. These three lines were chosen as they represent emissions resulting from deexcitation of excimer states that emit energetic photons with an energy of 9.8 eV. We observed that the intensity of the VUV Ar2* excimer emission at 126 nm increased with increasing gas pressure, but decreased with increasing excitation pulse frequency and pulse width. In contrast, the intensities of the NIR lines decreased with increasing gas pressure and increased with increasing pulse frequency and pulse width. We have demonstrated that energetic VUV photons of 9.8 eV can be efficiently generated in a dielectric barrier discharge in Ar

    Development and optimisation of a solid-state pulsed power supply for a CO₂ TEA laser

    Get PDF
    Thesis (MSc)--Stellenbosch University, 2003.ENGLISH ABSTRACT: With technological advances in solid-state switches the modernization of conventional pulsed power supplies utilizing thyratrons has become possible. A novel pulsed power supply is designed where two series-stacked IGBTs (rated at 1700 V and 300 A each) are used to replace a thryatrondriven pulsed power supply for a mini CO2 TEA laser. The mini CO2 TEA laser is firstly characterized in order to optimize the design of the pulsed power supply. It is found that stable laser discharges can be obtained with electrode voltage rise-times of 150 ns or less. Furthermore, the optical output energy and the efficiency of the laser have been significantly increased by reducing the peaking capacitor size of the pulsed power supply. The two stacked IGBTs switch a C-C transfer loop and the generated pulse is stepped up by a pulse transformer and is compressed by a two-stage magnetic pulse compression unit. Theoretically and through measurements it is shown that automatic voltage sharing between the two IGBTs can be obtained if the turn-on time of the IGBTs is much faster than the transfer time of the switched C-C transfer loop. Lifetime tests reveal that high-power IGBTs are able to reliably switch pulses with peak currents between 4 and 5 times the rated average current of the device. Under laser fault conditions, i.e. laser arcing or missing laser discharges, the reliability of the pulser can be increased by using over-voltage snubbers. In addition, it was found that the internal diode of IGBT modules can eventually fail under the prevalence of laser fault conditions. A modular construction approach is used where components of the pulsed power supply are preassembled. A new rectangular layout of the magnetic pulse compression unit is utilized in order to minimize size and simplify the final construction and assembly.AFRIKAANSE OPSOMMING: Nuwe ontwikkeling in vastetoestand-skakelaars het die modernisering van laser-pulskragbronne moontlik gemaak. ’n Nuwe kragbron wat gebruik maak van twee seriegeskakelde IGBT’s is ontwerp om ’n Tiratron-gedrewe laserkragbron te vervang, wat vir ’n mini-C02-TEA-laser gebruik word. Die laser is vooraf eers gekarakteriseer om sodoende die laserkragbron te optimeer. Daar is bevind dat stabiele laserontladings verkry kan word met spanningstygtye van 150 ns of minder. Verder kan die uittree-energie van die laser beduidend verhoog word deur die uittreekapasitore (eng.: peaking capacitors) van die laserkragbron te verminder. Die twee serie-geskakelde IGBT’s skakel ’n C-C oordraglus. Die spanning van die gegenereerde puls word deur ’n pulstransformator verhoog en die stygtyd van die puls word met ’n twee-stadium magnetiese pulskompressor verlaag. Teoreties en deur metings kan getoon word dat eweredige spanningsverdeling tussen die twee IGBT’s outomaties verkry kan word indien die skakeltye van die IGBT’s baie vinniger as die oordragstyd van die C-C oordraglus is. Toetse het getoon dat IGBT’s pulse met piekstrome van tussen vier tot vyf keer die gespesifiseerde gemiddelde stroom betroubaar kan skakel. Tydens laserfouttoestande kan die betroubaarheid van die IGBT verhoog word deur oorspanningsgapsers te gebruik, maar onder fouttoestande wat voortduur, kan die IGBT se interne diode vemietig word. Die komponente van die laserkragbron is as modules vervaardig, wat op ’n maklike wyse gemonteer kan word. ’n Nuwe reghoekige uitleg is gebruik vir die konstruksie van die magnetiese pulskompressor, waarmee die grootte van die pulskompressor geminimeer en die konstruksie vergemaklik is

    Influence of gas discharge parameters on emissions from a dielectric barrier discharge excited argon excimer lamp

    Get PDF
    The original publication is available at http://www.sajs.co.za/A dielectric barrier discharge excited neutral argon (Ar I) excimer lamp has been developed and characterised. The aim of this study was to develop an excimer lamp operating at atmospheric pressure that can replace mercury lamps and vacuum equipment used in the sterilisation of medical equipment and in the food industry. The effects of discharge gas pressure, flow rate, excitation frequency and pulse width on the intensity of the Ar I vacuum ultraviolet (VUV) emission at 126 nm and near infrared (NIR) lines at 750.4 nm and 811.5 nm have been investigated. These three lines were chosen as they represent emissions resulting from deexcitation of excimer states that emit energetic photons with an energy of 9.8 eV. We observed that the intensity of the VUV Ar2* excimer emission at 126 nm increased with increasing gas pressure, but decreased with increasing excitation pulse frequency and pulse width. In contrast, the intensities of the NIR lines decreased with increasing gas pressure and increased with increasing pulse frequency and pulse width. We have demonstrated that energetic VUV photons of 9.8 eV can be efficiently generated in a dielectric barrier discharge in Ar
    corecore