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Abstract

With technological advances in solid-state switches the modernization of conventional pulsed 

power supplies utilizing thyratrons has become possible. A novel pulsed power supply is designed 

where two series-stacked IGBTs (rated at 1700 V and 300 A each) are used to replace a thryatron- 

driven pulsed power supply for a mini CO2  TEA laser.

The mini CO2  TEA laser is firstly characterized in order to optimize the design of the pulsed power 

supply. It is found that stable laser discharges can be obtained with electrode voltage rise-times of 

150 ns or less. Furthermore, the optical output energy and the efficiency of the laser have been 

significantly increased by reducing the peaking capacitor size of the pulsed power supply.

The two stacked IGBTs switch a C-C transfer loop and the generated pulse is stepped up by a pulse 

transformer and is compressed by a two-stage magnetic pulse compression unit. Theoretically and 

through measurements it is shown that automatic voltage sharing between the two IGBTs can be 

obtained if the turn-on time of the IGBTs is much faster than the transfer time of the switched C-C 

transfer loop. Lifetime tests reveal that high-power IGBTs are able to reliably switch pulses with 

peak currents between 4 and 5 times the rated average current of the device. Under laser fault 

conditions, i.e. laser arcing or missing laser discharges, the reliability o f the pulser can be increased 

by using over-voltage snubbers. In addition, it was found that the internal diode of IGBT modules 

can eventually fail under the prevalence of laser fault conditions.

A modular construction approach is used where components of the pulsed power supply are pre­

assembled. A new rectangular layout of the magnetic pulse compression unit is utilized in order to 

minimize size and simplify the final construction and assembly.
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Opsomming

Nuwe ontwikkeling in vastetoestand-skakelaars het die modemisering van laser-pulskragbronne 

moontlik gemaak. ’n Nuwe kragbron wat gebruik maak van twee seriegeskakelde IGBT’s is 

ontwerp om ’n Tiratron-gedrewe laserkragbron te vervang, wat vir ’n mini-C02-TEA-laser gebruik 

word.

Die laser is vooraf eers gekarakteriseer om sodoende die laserkragbron te optimeer. Daar is bevind 

dat stabiele laserontladings verkry kan word met spanningstygtye van 150 ns of minder. Verder kan 

die uittree-energie van die laser beduidend verhoog word deur die uittreekapasitore (eng.: peaking 

capacitors) van die laserkragbron te verminder.

Die twee serie-geskakelde IGBT’s skakel ’n C-C oordraglus. Die spanning van die gegenereerde 

puls word deur ’n pulstransformator verhoog en die stygtyd van die puls word met ’n twee-stadium 

magnetiese pulskompressor verlaag. Teoreties en deur metings kan getoon word dat eweredige 

spanningsverdeling tussen die twee IGBT’s outomaties verkry kan word indien die skakeltye van 

die IGBT’s baie vinniger as die oordragstyd van die C-C oordraglus is. Toetse het getoon dat 

IGBT’s pulse met piekstrome van tussen vier tot vyf keer die gespesifiseerde gemiddelde stroom 

betroubaar kan skakel. Tydens laserfouttoestande kan die betroubaarheid van die IGBT verhoog 

word deur oorspanningsgapsers te gebruik, maar onder fouttoestande wat voortduur, kan die IGBT 

se interne diode vemietig word.

Die komponente van die laserkragbron is as modules vervaardig, wat op ’n maklike wyse 

gemonteer kan word, ’n Nuwe reghoekige uitleg is gebruik vir die konstruksie van die magnetiese 

pulskompressor, waarmee die grootte van die pulskompressor geminimeer en die konstruksie 

vergemaklik is.
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B magnetic flux density, T
C capacitance, F
D duty cycle
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F timing factor
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H applied magnetic field, A/m
I constant (fixed) current, A
i time-dependent current, A
k capacitor ratio, switching ratio
L inductance, H
N number of windings
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0 starting, initial, beginning
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d delay
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equ equivalent
/ fall, forward
G gate
GE gate-emitter
hold hold-off
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i initial
in input
inv inversion
J current density
j junction
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leak leakage
loss losses
mag magnetization
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opt optimum
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par parasitic
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UV Ultra-violet
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Chapter 1

Introduction

Since the construction of the first laser in 1960 by Maiman great advances have been made in laser 

development. Although the laser built by Maiman was a solid-state ruby laser, gas lasers were the 

first type o f lasers manufactured on a large scale and applied in industry. Among the most widely 

used gas lasers in industry today are the CO2  and Excimer lasers. The CO2 laser emits in the 

infrared spectrum and can be operated in continuous or pulsed mode. The most common 

applications for CO2  lasers include photo-chemistry (isotope separation) and materials processing, 

i.e. cutting, drilling and welding. The Excimer laser on the other hand emits in the ultraviolet and is 

widely used for lithography as well as photo-chemistry, by virtue of the short laser wavelength 

emitted.

1.1 Problem statement

Continuous mode CO2  lasers are operated at low gas pressures and the laser gas medium is excited 

by low-pressure electric discharges. The current densities of the discharges are normally relatively 

small and the electric excitation of low-pressure CO2  lasers does not pose a large technological 

problem.

However, it can be advantageous to operate gas lasers at higher pressures (between 1 and 10 bar). 

Higher gas pressures result in larger optical gain and efficiency, but the electric excitation of the
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laser medium becomes a greater challenge. For the excitation of the laser medium uniform 

discharges are needed, which at higher gas pressures (> 0.5 bar) can only be obtained by applying 

fast rising high-voltage pulses to the gas medium. Needless to say high-pressure CO2  TEA 

(Transverse Excited Atmospheric) lasers and Excimer lasers are operated in pulsed mode. For the 

excitation o f high-pressure CO2  TEA lasers voltage rise-times between 50 and 100 ns are needed, 

whereas in Excimer lasers even faster pulses with rise-times less than 50 ns are required. Depending 

on the laser electrode spacing and gas pressure excitation voltages between 20 and 100 kV are 

required. In Excimer lasers the excitation voltages are normally higher than in CO2  lasers.

Pulsed power supplies are used to generate the fast high-voltage pulses for the excitation of high- 

pressure gas lasers. The key component in a pulsed power supply is an electric switch, which is 

used in the generation of the fast excitation pulses. Historically the first pulsed power supplies 

utilized spark gaps. Although spark gaps are very robust they have a limited lifetime due to erosion 

of the spark gap electrodes. In order to improve the lifetime, thyratrons which are based on vacuum 

tube technology were employed and are still used in industry today. However, the thyratron also has 

a limited lifetime, which depends on the working conditions of the switch and is therefore difficult 

to predict.

With advances in solid-state technology new high-performance solid-state switches have become 

available. Thyristors and GTOs (Gate Turn-off Thyristor) have already been widely used for pulsed 

power applications and currently even a stacked thyristor switch is available to directly replace 

thyratrons [26]. The drawback of the thyristors and GTOs are that they are relatively slow compared 

to thyratrons. Consequently, more magnetic pulse compression is needed to compress the generated 

voltage pulses to obtain sufficiently fast voltage rise-times to excite a laser. Recently new types of 

high-performance solid-state switches have become available, including the Insulated Gate Bipolar 

Transistor (IGBT). The advantage o f IGBTs above thyristors and GTOs is that IGBTs have 

increased switching speeds and are more easily turned off. Therefore, for this thesis an IGBT was 

used as pulsed power switching device. Although solid-state switches lack the robustness of 

thyratrons, they are much cheaper and allow for a more compact design. Furthermore, the modem 

solid-state switches, like MOSFETs and IGBTs, are more controllable, i.e. can easily be turned on 

and off, and need smaller driving circuits compared to thyratrons, thyristors and GTOs. The 

replacement o f thyratrons by modem solid-state switches has almost become mandatory, from both 

an economical and technological viewpoint. However, the solid-state switches should be

2

Stellenbosch University http://scholar.sun.ac.za/



implemented with the same robustness and reliability as thyratrons. If used correctly solid-state 

switches can outlast thyratrons.

1.2 Aim

In this thesis a systematic approach in designing a laser pulsed power supply utilizing a solid-state 

switch, in this case an IGBT, is presented. The final goal is therefore to replace a thyratron driven 

laser pulsed power supply with an optimised IGBT driven power supply. In order to achieve this 

goal it is important to acquire a sound understanding of the dynamic behaviour o f an IGBT. 

Secondly, to optimise the system the laser is characterized, thereby determining the effect of the 

excitation circuit on the laser output energy, efficiency and stability. Another important aim is to 

determine the reliability of IGBTs in laser pulsed power supplies in order to design a robust system. 

Finally, a detailed outline of the design process is presented, which can be used as a reference for 

future work.

1.3 Outline

In Chapter 2 a brief overview of existing pulsed power supply topologies is given followed by a 

more detailed discussion of the C-C transfer topology in Section 2.2, which was the topology of 

choice for this project. The different components of a pulsed power supply, which includes 

magnetic pulse compression (MPC) circuits and pulse transformers, are also discussed. In 

Section 2.4 special attention is given to the behaviour and characteristics o f pulse transformers.

The next step is to analyse the behaviour of an IGBT in a pulsed power supply and in Chapter 3 a 

detailed analysis o f the behaviour of IGBTs is presented. In Section 3.2 the behaviour of an IGBT 

in a C-C transfer topology is analysed from which some basic design considerations can be 

deduced. Furthermore, in Section 3.4 the series stacking and paralleling o f IGBTs is considered 

followed by a short discussion of the possible over-current capabilities of IGBTs.

In Chapter 4 the results o f the CO2  TEA laser characterization are presented and the basic excitation 

circuit that was used for characterization is described in Section 4.1. The effect of the excitation
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circuit on the laser’s stability and output efficiency is investigated and discussed in Sections 4.2 

and 4.3, respectively.

In Chapter 5 an outline o f the design process is given followed by a more detailed description of the 

construction of the different components of the pulsed power supply. This includes the IGBT unit, 

pulse transformer and magnetic pulse compression unit, discussed in Sections 5.3, 5.4 and 5.5, 

respectively.

Before finally testing the newly constructed pulsed power supply, the reliability of IGBTs is 

discussed in Chapter 6. The lifetime of IGBTs when used in pulsed supplies, where the pulse 

current exceeds the current rating of the IGBT, is experimentally tested. The lifetime test set-up and 

results are presented in Section 6.1. Additional attention is given in Section 6.2 to the protection and 

the lifetime of the IGBT under fault conditions.

Finally, in Chapter 7 the test results of the solid-state pulsed power supply are given. Measured 

voltage and current waveforms are shown in Section 7.1 followed by a discussion in Section 7.2 of 

the laser output energy and efficiency for the new laser pulsed power supply.

In Chapter 8 conclusions about the performance and reliability of laser pulsed power supply 

utilizing IGBTs, are made. Important suggestions are also given that could further improve the 

reliability of the laser pulsed power supplies.

4
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Chapter 2

Laser pulsed power circuit topologies and 

components

In order to make a choice in the circuit topology it is important to perform a preliminary analysis of 

different pulsed power circuit topologies and to determine the peak circuit currents, circuit voltages 

and energy transfer times. Better knowledge of the circuit currents and voltages will also aid in the 

choice of solid-state switch ratings, where for this project an Insulated Gate Bipolar Transistor 

(IGBT) is used. Special emphasis is placed on the optimisation of pulsed power supplies in order to 

yield better supply efficiencies.

In the second part of this chapter magnetic pulse compression circuits (MPCs) are discussed in 

more detail. Additional focus is placed on the minimization of the magnetic volume that will be 

needed in a pulse compression circuit, in order to cut costs. This is followed by an analysis and 

revision of pulse transformers used in pulsed power applications.

2.1 Topology overview

As mentioned in the introduction the main purpose of a laser pulsed power supply is to supply short 

high-voltage pulses to generate stable laser discharges. In this section a short overview o f different 

laser pulsed power supplies is given outlining the basic principle o f the different topologies.

5

Stellenbosch University http://scholar.sun.ac.za/



The most common topology used for pulsed power supplies is the C-C transfer circuit [ 12][18][45] 

of which the LC-inversion circuit is a special variation. In a C-C transfer topology the laser is 

excited by a single short pulse. Alternatively another type of excitation method is the pre-pulse- 

main-pulse topology, where a short pre-pulse initiates the laser discharge followed by a longer main 

pulse depositing the larger part of the excitation energy into the laser discharge [9]. Other types of 

topologies, which will only be mentioned, are the Marx generator and voltage multiplier 

topologies [24],

2.1.1 C-C transfer topology

The general layout o f a C-C transfer pulsed power supply is shown in Figure 2-1. It consists of two 

main components, the primary switching unit and the magnetic pulse compression unit. The 

primary switching unit contains an active switching device (e.g. IGBT) to generate the initial 

voltage pulse. Normally the rise-time of the initially generated voltage pulse is too slow to excite 

the laser discharge and would result in unstable discharges. Therefore, a magnetic pulse 

compression (MPC) unit is used to temporally compress the initial voltage pulse in order to 

decrease the rise-time o f the pulse. This will result in stable and efficient laser excitation. Some 

switching units are able to generate voltage pulses which have sufficiently fast rise-times, and in 

these cases no magnetic pulse compression unit is needed. The electrical power for the primary 

switching unit is supplied by a high-voltage charging unit.

in itia l vo ltage com pressed

Figure 2-1: Basic C-C transfer pulsed power supply layout.

Furthermore, there are two basic topologies for the primary switching unit, the directly switched 

C-C transfer loop and the LC-inversion circuit.
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Directly switched C-C transfer loop

The circuit diagram of the directly switched C-C transfer loop shown in Figure 2-2 is fairly simple. 

The input capacitor Q n is initially charged by a high-voltage charging supply through the charging 

inductor /-charge- As soon as the switching device is turned on energy is transferred by a resonant C-C 

transfer from the input capacitor Cm to the output capacitor Cout- The energy transfer causes the 

output voltage to rise and a voltage pulse is obtained at the output o f the C-C transfer loop. The 

output o f the C-C transfer loop can then either be connected to an MPC unit or directly to a laser if 

the obtained voltage rise-time is sufficiently fast. The transfer inductance L, can also be replaced by 

a saturable inductor, which then acts as a magnetic assist [12][15][49]. The magnetic assist delays 

the C-C transfer and allows the switch to first fully turn on. Under ideal lossless and matched 

conditions the pulse energy generated by the circuit is equal to the initially stored energy in the 

input capacitor.

HV*-

-nnnrv 
* L t '

Cin Cout

MPC
unit

Lcharge \

Figure 2-2: Circuit diagram of a directly switched C-C transfer loop.

In modem pulsed power supplies solid-state switches are used which have a limited voltage rating 

and are not able to directly switch the high voltages needed for gas laser excitation. To overcome 

this problem a step-up pulse transformer can be inserted into the C-C transfer loop [12] [24] [49] as 

indicated in Figure 2-3. The switch can therefore be operated at a lower voltage not exceeding the 

voltage rating o f the switch. The generated pulses are stepped up to a voltage needed for the laser 

excitation.

HV (

-jTSOTV. 
+ L t '

Pulse
transformer

Cin Cout

MPC
unit

Figure 2-3: Circuit diagram of a directly switched C-C transfer loop with pulse transformer.
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LC-inversion circuit

The basic topology of the LC-inversion circuit [24][42] is shown in Figure 2-4. It resembles the 

directly switched C-C transfer loop, except that two input capacitors are used. Furthermore, the 

circuit makes use o f a magnetic switch Zsat, which is discussed in more detail in Section 2.3. The 

two input capacitors Cini and Cm 2  are charged in parallel through Zsat and Lcharge- Initially the voltage 

v \2 across the two capacitors is zero. When the switch is turned on the voltage across the switched 

capacitor C i n i is resonantly inverted through the inversion inductor Z ,jn v . After the inversion the two 

capacitors are connected in series. Ideally double the charging voltage is obtained across the two 

input capacitors. The magnetic switch is designed to be in an unsaturated high-impedance state 

during the voltage inversion and switches to a saturated low-impedance state as soon as the voltage 

inversion is completed. When the magnetic switch saturates a C-C transfer from the two input 

capacitors to the output capacitor is obtained. The inversion time of the input capacitor has to be 

much longer (at least 4 to 5 times longer) than the C-C transfer time, i.e. Lmy »  Zsat. Consequently, 

in this topology initial pulse compression is already obtained by the use of a magnetic switch 

resulting in a LC-inversion time that is longer than the C-C transfer time.

Lsat

-Jp fcr-

HV (

Cln2

Cint 3  Linv 

S

Cout

12

1  1 '

MPC
unit

Lcharge!

Figure 2-4: Circuit diagram of LC-inversion topology.

It is also possible to design an LC-inversion circuit without the use o f a magnetic switch Lsat, 

replacing it by a normal air-core inductor. The air-core inductor has to be tuned in order to obtain 

good transfer efficiency. This eliminates the need for a magnetic switch and reduces costs.

Another variation on the LC-inversion topology is the super inversion pulser topology [42]. An 

additional switched C-C transfer is added to the input o f the LC-inversion circuit and the active 

switch in the LC-inversion loop is replaced with a magnetic switch as shown in Figure 2-5. With
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the super inversion pulser topology the ratings of the active switch can further be reduced and in 

conjunction with modem solid-state switches this topology can probably be used for high pulse 

energy (> 100 J/pulse) applications.

Lsat

---- ----------

HV<

Lt
-nswrv

Cin1

Cin3 Cout

Cin2 lAlJnV

MPC
unit

Lcharge

Figure 2-5: Circuit diagram of a super inversion pulser topology.

2.1.2 Conclusion

In order to concentrate on the behaviour and reliability o f an IGBT the C-C transfer topology is the 

preferred choice due to its simplicity and wide use. The topology will have to include a pulse 

transformer, due to the limited voltage ratings of IGBTs. A LC-inversion topology also seems to be 

viable, but the use of a saturable inductor in conjunction with a fast solid-state switch (e.g. IGBT or 

MOSFET) causes the generated voltage pulse to be too fast for step-up pulse transformers 

constructed with thin laminated iron cores. Consequently, a more expensive special high-speed 

transformer core (e.g. amorphous core or Finemet core) has to be used.

At this stage a pre-pulse-main-pulse topology is not considered due to the more complex set-up. 

The construction of a PFL (pulse forming line) also necessitates the use of a large number of 

components thereby increasing construction costs. It is advisable to consider the pre-pulse-main- 

pulse topology as a next stage to increase the output efficiency of the laser and to lengthen laser 

pulses for materials processing.

Summarizing, the C-C transfer topology consisting of a primary switching unit and a MPC unit is 

chosen as the basic pulsed power supply topology for this project. Furthermore, a directly switched 

C-C transfer loop with pulse transformer is considered as the primary switching unit topology. In
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the following sections the primary switching unit, MPC unit and pulse transformer of the C-C 

topology are discussed in more detail.

2.2 Primary switching unit

As mentioned earlier, in a C-C transfer topology the primary switching unit generates the initial 

voltage pulse by using an active switching device. In this section the directly switched C-C transfer 

circuit, which is the topology used for the primary switching unit, is discussed and special emphasis 

is placed on the optimisation of the C-C transfer loop. The switched C-C transfer loop also forms 

the basic building block of the series MPC unit.

2.2.1 Circuit analysis

The behaviour of a C-C transfer loop is well documented and in this sub-section a summary of the 

voltage and current response of a C-C transfer loop is given. The detailed circuit diagram of a 

switched C-C transfer loop is shown in Figure 2-6. The components Ci, Lt, R, and Ci form a 

damped C-C transfer loop, where R, corresponds to the equivalent losses in the circuit, mainly 

consisting of conduction losses. Initially the switch S  is open and the storage capacitor Ci is charged 

to a voltage V0, thus vcl (t = 0) = V0 . Furthermore, the transfer inductor Lt and the output

capacitor Ci have initial conditions of zero, i.e. i, (t = 0) = 0 A  and vC2 (t = 0) = 0 V . As soon as the

switch is closed at t = 0, energy can be transferred from C\ to C2  and a voltage rise is obtained over 

the output capacitor C2 .

■/rnnrv v w
Rt+ +

C2
VC2

S

Figure 2-6: Circuit diagram of a directly switched C-C transfer loop.
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The waveforms for vci, \>a and ih for / > 0 can be calculated by performing a Laplace transform 

analysis [31] of the damped C-C transfer circuit and the following results for t>  0 are obtained [41]:

coL

vc,(t) = r 0 1 - C , + C 2
l -  —  e * cos(orf + (f)

co

V C2 O’) — Vo
c,

c , + c 2
1 -  —  e cos (cot + (f) 

co

(2 .1)

(2 .2)

(2.3)

with a  = ——, <f> = arctan(- a !  co), co0 = —=
2 L,

L. C' C=

CO= V®0 - a 2 .

' C , + C 2

For a weakly damped C-C transfer loop the damping factor a  is comparatively small, i.e. a  «  co. 

Therefore, the following approximations can be used:

<p = 0 1
f for weakly damped CLC - transfer loop

co = co0 J

With the above approximations Equations 2.1, 2.2 and 2.3 can be simplified:

i,(t) = — 0— e~at sin(ftj0r),
co 0L ,

vc\(0 =  V0\ \ -  C l  [l- e"" cos((y0/)]l,
C, + C2

VciO) = V0 ■ C‘ [l -  c"" cos(tu0/) ] .
c , + c 2

(2.4)

(2.5)

(2 .6)

At the end o f the transfer period r  the transfer current drops to zero, i,( r) = 0, and the output 

voltage vc2  reaches a maximum. By using either Equation 2.4 or 2.6 it can be shown that the 

transfer period (transfer time) is given by the following equation:
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n  I C, C? 
r  = —  = * , £ >— (2.7)

<y0 \  C, + C2

The resonant transfer time and the voltage rise-time of the output voltage are closely related. For the 

discussions in this and the following chapters the voltage rise-time is defined as the time needed for 

the voltage to rise from 10% to 90% of the peak voltage. From Equation 2.6 and using the 

mentioned criteria for the rise-time the relationship between the rise-time and the transfer time can 

be deduced:

'r is e  =  ^1 vc2  = 0 .9 vc2 nm “  f lvc 2 =0.1vc2m „  =  0 6 T  ’

Voltage and current waveforms for the ideal transfer without losses (a  = 0) are shown in 

Figures 2-7, 2-8 and 2-9 for different capacitor ratios k  = C 1 /C 2 . The output voltage rise over the 

capacitor C2  and the sinusoidal transfer current pulse can be clearly seen in Figure 2-8 and 2-9, 

respectively. Note how the final voltages vci(z) and v a(r) at the end o f the transfer period change 

with the capacitor ratio k.

1.0

0.8

0.6
e

0.40
0M 0.2
s
0
► 0.0

■8
.£ -0.2
a
i -0.4
z

-0.6

-0.8

- 1.0
0.0 0.2 0.4 0.6 0.8 1.0 

Normalized time t  Ix

Figure 2-7: Normalized waveform of the 
input voltage vCi(0 of a C-C transfer loop.

Figure 2-8: Normalized waveform of the 
output voltage vci(t) o f a C-C transfer loop

0.2 0.4 0.6 0.8

Normalized time t h
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Normalized time t h

Figure 2-9: Normalized current waveform of the C-C transfer current

Equations 2.5 and 2.6 can be used to calculate the final capacitor voltages [41][44] at the end of the 

transfer period r :

Cl

(2.9)

(2.10)

The aim of the C-C transfer loop is not only to obtain an output voltage pulse over capacitor C2 , but 

also to maximize the energy transfer from the initially charged capacitor Ci to the output 

capacitor C2 . The transfer efficiency O of the C-C transfer loop is defined as follows [41]:

(j) _ E g  (T) _ E a  (0 ) ~ E c 1 (r) -  E ioss
* - B a ( a ) '  Ea (0)  '  ( 2 ' U )

where £ |oss is the transfer energy loss dissipated in the transfer resistance R, and Eci and Eci are the 

stored energies in capacitors C\ and C2 , respectively. Note that the transfer efficiency can be 

maximized by minimizing the remaining energy on capacitor C 1 and/or minimizing the transfer 

losses. Equation 2.11 can now be rewritten as a function of the capacitor ratio k and the damping
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factor a  by using the final capacitor voltages defined in Equations 2.9 and 2.10 [47]:

(2 .12)

2.2.2 Optimisation

Optimisation of C-C transfer loops without losses ( a =  0)

For ideal transfer conditions without losses the optimisation of the transfer efficiency is 

straightforward. From Equation 2.11 it becomes clear that in the absence of losses the remaining 

energy on capacitor C\ must be zero to get a 100 % transfer efficiency. Therefore, the final voltage 

over capacitor C\ must be zero. From Equation 2.9 or 2.12 this results in an optimum capacitor 

ratio k  = 1. [41]

Optimisation of C-C transfer loops with losses ( a  > 0)

The optimisation of the transfer efficiency using Equation 2.12 is not straightforward, because the 

exponent ax  in Equation 2.12 is a function of the circuit values C\, C2, L, and Rt, where

Normally, the transfer inductance L, and resistance R, are fixed in the design, which leaves two 

degrees of freedom: C 1 and C2 . The degrees o f freedom can further be reduced by adopting one of 

two design approaches [47]:

Method A. The input parameters are fixed, i.e. capacitor C\ and the initial charging voltage Vo

(2.13)

are fixed. The output capacitor C2  is varied to obtain the maximum transfer 

efficiency [8]. Thus, the only degree of freedom is capacitor C2 , which can also be 

expressed as C 1/&2 , where is the capacitor ratio with C 1 kept constant. For this 

design approach Equation 2.13 can be rewritten as

with k2 = k\ (2.14)
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Method B. In laser pulsed power supply designs the output parameters (output voltage and 

energy) are normally specified. Therefore, the output parameters are fixed, i.e. the 

output energy EC2(t)  and voltage Vc2(r) are fixed. This in turn fixes the value of 

capacitor C2 . In this case the input capacitor C 1 is varied to obtain the maximum 

transfer efficiency [41] [47]. The value of capacitor C\ is the only degree of freedom, 

with C 1 = k\-C2, where k\ is the capacitor ratio with C2  kept constant. Equation 2.13 

can also be rewritten for this design approach

a t  = — R — — - — , with k .= k\„  . (2.15)
2 \ L ,  k  +  l =constant

The above-mentioned approaches can be visualized on a two-dimensional contour graph as depicted 

in Figure 2-10 where the efficiency is plotted versus the capacitor ratios k\ and k2 for a transfer loss 

of approximately 10%. For the special case where k\ = £ 2  = 1, the capacitor ratio and capacitor 

values Ci and C2  corresponds to values that would have been used for the ideal transfer without 

losses. For the ideal case the two mentioned design methods are equivalent with a  = 0.

0.908 

0.906 

0.904 

0.902 

0.9 

0.898 

0.896 

0.894 

0.892 

0.89 

0.888

0.9 0.95 1 1.05 1.1 1.15
k2 with changing C2 (C1 fixed)

Figure 2-10: Two-dimensional colour contour graph of the C-C transfer efficiency as a function of 
the capacitor ratio k for two different optimisation approaches, (approx. 10% transfer 
losses). Bar on the right hand indicating transfer efficiency.
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Design approach A (fixed input parameters) can be visualized by the horizontal line in Figure 2-10 

with k\ = 1. The output capacitor C2  is varied, effectively varying k2, to optimise the transfer 

efficiency. For this case the optimum transfer efficiency is obtained at k2 = 1.05 (approx. 10% 

transfer losses), which implies C\ > C2. It is interesting to note that for this design approach the 

capacitor ratio will always be larger than one. This can be deduced from the geometry of the 

contour plot in Figure 2-10. Analogue to the first design approach, design approach B (fixed output 

parameters) can be visualized by the vertical line in Figure 2-10 with k2 = 1 and varying k\ to obtain 

the optimum transfer efficiency. The optimum transfer efficiency is obtained at k\ = 0.95 

(approx. 10% transfer losses), which implies C\ < C2 and for this design method the capacitor ratio 

will always be smaller than one.

As mentioned earlier, the design method B is normally used for the design of laser pulsed power 

supplies, because the output energy and voltage are determined by the laser parameters and are 

therefore fixed. In order to directly compare the two design approaches as applied to laser pulsed 

power supplies, optimisation method A has to be adjusted to attain the same output energy and 

voltage as for method B, since for method A the input energy and voltage are normally specified. 

Optimisations using the two methods have been performed for a range of different transfer losses 

and the results, i.e. transfer efficiencies, capacitor ratios, transfer losses, remaining input energy and 

transfer time, are shown in Figures 2-11 to 2-15, respectively.

Estimates losses E  loeSiHitIE „

Figure 2-11: Capacitor ratio for two different 
optimisation methods vs. transfer losses in a 
C-C transfer loop.

Estimates losses E  ioss,esl/£  0

Figure 2-12: Transfer efficiency for two 
different optimisation methods vs. transfer 
losses in a C-C transfer loop.
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Figure 2-13: True transfer losses for two 
different optimisation methods vs. transfer 
losses in a C-C transfer loop.
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Estimates losses E i ^ J E  0

0.30

Figure 2-14: Remaining energy on input 
capacitor Ci for two different optimisation 
methods vs. transfer losses in a C-C transfer 
loop.

Estimates losses E ,„.r JE  0

Figure 2-15: Transfer time for two different optimisation 
methods vs. transfer losses in a C-C transfer loop.

The graphs in Figure 2-11 to 2-15 are all plotted versus an estimated transfer loss, £iOSs,est- The 

estimated loss is the transfer loss that would be obtained with capacitor values as used for the ideal, 

lossless case where k\ = ki = 1. From Figure 2-11 it can be seen that for method A (fixed input 

parameters) the capacitor ratio is always greater than unity, k\ > 1, whereas for method B (fixed 

output parameters) the capacitor ratio is always less than unity, k2 < 1. As mentioned earlier for an
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ideal circuit with no losses the two design methods coincide, resulting in the same capacitor ratio 

(k\ = k2 = 1), transfer efficiency ( 0 = 1 )  and transfer time. The main differences between the two 

design methods become apparent in Figures 2-13 and 2-14. Design method A results in lower 

transfer losses, due to lower transfer currents caused by longer transfer times (see Figure 2-15 and 

Equations 2.4 and 2.16). On the other hand design method B results in lower remaining 

energies EC\{r) in the input capacitor C\. Finally, as applied to laser pulsed power supply design 

method B yields a slightly better transfer efficiency than method A, as can be seen in Figure 2-12.

2.2.3 Switching currents

From Figure 2-6 it is apparent that the transfer current is equal to the switching current. Therefore, 

the peak transfer current is also equal to the peak switching current and can be calculated from 

Equation 2.4. For an ideal circuit without losses (a=  0)

(2 1 6 >(o0L,

where /JiPeak is the peak switching current. In many pulsed power supply designs the charging 

voltage Vo and pulse energy are fixed design parameters and it is useful to rewrite Equation 2.16 in 

terms of the pulse energy and charging voltage. The pulse energy is equal to the initially stored 

energy in the input capacitor C\ of the C-C transfer loop. It was also shown that for optimum energy 

transfer the input and output capacitors are equal, C\ = C2. Thus, for an ideal circuit the following 

can be stated:

p̂uise =i Ci K  ^  r = —  = .
COq

These two equations are applied to Equation 2.16 and the following result is obtained:
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For fixed pulse energies the peak switching current can therefore be reduced by either increasing 

the initial charging voltage and/or increasing the transfer time. Although the above analyses were 

performed for an ideal circuit, Equations 2.16 and 2.17 can still be used to obtain good 

approximations of the peak switching current in practical circuits, because the losses in practical 

C-C transfer loops normally do not exceed 10%.

It is useful to calculate the average and RMS (root-mean-square) switching currents, which can be 

used to determine the losses of the switching device in the C-C transfer loop. Both the average and 

RMS switching currents of a single pulse can be calculated for a C-C transfer with low losses using 

Equation 2.4, where

, I 1 V0 / _„r ^  2
s, avg | pulse n  a>0L, n

( e - ’ + l  (2.18)

Generating the pulses at a repetition rate / rep results in a total average and total RMS current given 

by

A ,avg  — f t ’■epl'x  s>avg | pu|se ) — f r e p ^  ~  ^ j.peak  > ( 2 . 2 0 )

an<̂  -Tj.RMS = -\j/ r e p  T \Js.RMS | pulse )= V/ r e p  T  A,peak » (2-21)

where r is  the pulse duration, i.e. transfer time of the switched C-C transfer loop.

2.3 Magnetic pulse compression unit

Some switching devices are fast enough to generate voltage pulses with sufficiently fast rise-times 

to excite CO2  TEA lasers without the need of magnetic pulse compression (MPC). It is for example 

possible to excite a CO2  laser with a directly switched C-C transfer loop using a thyratron or spark 

gap as active switch, where the laser is connected parallel to the output capacitor C2  (see 

Figure 2-6). However, most often the switching devices are not capable of directly generating

19

Stellenbosch University http://scholar.sun.ac.za/



excitation pulses with adequately fast rise-times. This can be blamed on one of two limitations of 

the switching device:

1. Slow switching times'. This limitation is inherent in the switch and is difficult to overcome. It 

is possible to decrease the switching time by increasing the driver signal, which turns the 

switching device on, but care must be taken not to damage the device. This type of 

limitation is normally experienced with older types of solid-state switches, e.g. thyristors.

2. Limited current ratings: It was shown that the peak switching current in C-C transfer loops 

is inversely proportional to the transfer time and charging voltage of the C-C transfer loop 

(see Equation 2.17). Therefore, the minimum rise-time of the generated voltage pulse can 

also be limited by the peak current rating of the switching device. This problem can be 

overcome by increasing the charging voltage of the C-C transfer loop, but the maximum 

voltage rating o f the switch may not be exceeded. This limitation is often encountered with 

modem solid-state switches, e.g. MOSFET’s and IGBTs. These devices have sufficiently 

fast switching times, but are less robust than thyratrons and have limited voltage and current 

ratings.

For situations where the initially generated voltage pulse is too slow for laser excitation, magnetic 

pulse compression stages can be used to compress the pulse and to decrease the rise-time. In the 

following sections the basic principle and optimisation of MPC circuits are discussed.

2.3.1 Saturable inductors as passive current-controlled switches

Saturable inductors are the key component in MPC units and in this sub-section the basic properties 

of saturable inductors are discussed. Special magnetic materials (e.g. Finemet, Metglass, etc.) are 

used for the cores of saturable inductors [36] [37] and a typical BH-curve o f such a core is shown in 

Figure 2-16.
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1.5

Applied magnetic field H  [a.u.]

Figure 2-16: BH-curve o f a saturable inductor.

Ignoring hysteresis, the saturable inductor has two operating regions, the unsaturated and the 

saturated regions [32]:

1. Unsaturated region, \H\ < HsM : The magnetic flux density B is below the saturated flux 

density, 5 sat, and the BH-curve can be approximated by the following linear equation:

B = JUUH ,  (2.22)

where /Uu is the unsaturated permeability as indicated in Figure 2-16. The unsaturated 

permeability is relatively large resulting in a large inductance ZUnsat with

(2.23)
core

where N  is the number of inductor turns, Acore the equivalent core cross-section and /core the 

equivalent magnetic path length o f the inductor core.

2. Saturated region, \H\ > / / sat : When the applied magnetic field is increased beyond the 

saturation magnetic field Hsat, the gradient of the BH-curve decreases dramatically and the
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magnetic flux density is more or less clamped at the saturated flux density 5 sat. For the 

saturated region the BH-curve can again be approximated by a linear equation:

B = M*H + 5 sa, , (2.24)

where jus is the saturated permeability as indicated in Figure 2-16. Due to the decrease in 

permeability the inductance of the saturable inductor also decreases strongly. For complete 

saturation the permeability jus will approach the permeability o f air, /jq, resulting in 

approximately equal magnetic field strengths inside and outside the core. The magnetic flux 

has to be calculated over the whole cross-section A, of the saturable inductor and the 

saturated inductance is given by

where p  is the fill factor (packing factor) of the inductor, with p  = Acore/At.

If a voltage pulse is applied to a saturable inductor the inductor is initially in an unsaturated state 

with a relatively high inductance. The inductor current will increase relatively slowly and the 

saturable inductor is effectively in an “o ff ’ state. As the current through the inductor increases, the 

applied magnetic field also increases proportionally until the saturation field strength Hsat is 

reached. At this point the inductance decreases rapidly allowing a much faster increase in the 

inductor current and the saturable inductor effectively switches to an “on” state [32],

The switching behaviour of the saturable inductor is illustrated by a simple example [32] consisting 

o f a saturable inductor connected to a resistive load. The circuit diagram and simulated waveforms 

are shown in Figure 2-17. Initially no current is flowing through the saturable inductor and a 

voltage step is applied to the circuit. After the voltage step is applied the inductor current starts to 

increase causing a small voltage drop over the load resistor, but the main portion o f voltage is 

dropped over the inductor. Eventually the inductor saturates, the inductor current starts increasing 

rapidly and the inductor voltage drops to zero, i.e. the saturable inductor switches. Analogous to 

other types of switches, the inductor current flowing before the inductor switches is called the 

leakage current o f the saturable inductor.

unsat (/4 -> Mo), (2-25)
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Figure 2-17: Simple example illustrating the switching behaviour of a saturable inductor.

In Figure 2-17 the voltage hold-off time, i.e. the time needed for the inductor to saturate, can clearly 

be seen. The hold-off time rh0id is defined by the following equation [32]:

r hold

\ v L (t)dt = NA,pAB = A O , (2.26)
o

with vz, the inductor voltage, N  the number of inductor turns, A, the total area enclosed by the 

winding of the saturable inductor, p  the core packing factor (p = Acore /  At ) and AB the change in

magnetic flux density before the saturated flux density 5 sat is reached. Note that the above equation 

is equal to the change in magnetic flux content AO.

The hold-off time of a saturable inductor core can be increased by reverse biasing the core. This is 

achieved by using an additional reset winding through which a constant current is passed to initially 

drive the core into reverse saturation. Ideally, the maximum available change in the magnetic flux 

density that can be achieved with a constant DC reset current is twice the saturated flux density, 

Aflmax = 25 sat. For a pulsed reset current the maximum change in magnetic flux density is typically 

A5max = 5 sat + Br., with Br the remnant flux density. [32][48]

Lsat

0
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Series magnetic pulse compression topology

The most widely used MPC topology is based on the C-C transfer loop, which is also known as a 

Melville line or series pulse compression. Other types of MPC topologies are the parallel MPC and 

the transmission line MPC circuits [32]. In the following sections only the series MPC topology 

will be considered. A typical pulsed power supply topology making use of series MPC stages is 

shown in

Figure 2-18.

LO

C0 directly 
switched 
C-C loop

C1 MPC 
stage #1

- © -
Ireset

C2 MPC 
stage #2

C3

-<Tswrv- “ ♦ 
Ldec

-v OOP J---

CN MPC 
stage #N

- •  Output

CN+1

Figure 2-18: Typical pulsed power supply topology with series MPC stages.

The series MPC unit consists of multiple connected C-C transfer loops, where the output capacitor 

of each loop is also the input capacitor of the next C-C transfer loop. The saturable inductors of the 

MPC unit are each reverse biased by a reset winding with a constant reset current / reSet in order to 

increase the total flux swing before saturation occurs as mentioned earlier. Each saturable inductor 

is designed to saturate as soon as the voltage over the input capacitor of the corresponding MPC 

stage reaches a maximum. The hold-off time of every stage is thus equal to the transfer time o f the 

previous stage, thereby allowing the C-C transfer in a previous stage to be completed before the 

next C-C transfer in the following stage occurs. Pulse compression is now obtained by decreasing 

the transfer time of each successive stage. Due to the faster transfer times, the peak transfer current 

of each successive stage increases and the MPC unit has therefore also a current gain. Typical 

voltage and current waveforms obtained in an MPC unit are shown in Figure 2-19, where the pulse 

compression and the current gain of a series MPC unit can be clearly seen. Summarizing, the initial 

pulse is generated by the primary switching unit and propagates through the MPC unit by 

consecutive and increasingly faster C-C transfers [32],
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Figure 2-19: Typical voltage and current waveforms obtained in a series MPC topology.

A single MPC stage is now considered and the basic circuit diagram of a single MPC stage is 

shown in Figure 2-20.

i .

Input # -

v.in

.ymnn—-np ifl— 
Lpar Lsat Rt

Cn Cn+1

- •  Output

+
vout

Figure 2-20: Series magnetic pulse compression stage based on the C-C transfer loop.

The C-C transfer loop in Figure 2-20 is in principle identical to the C-C transfer loops discussed in 

Section 2.2.1 (see Figure 2-6). Instead of utilizing an active switch the MPC stage makes use o f a 

saturable inductor acting as a passive current-controlled switch. The input voltage waveform Vi„ is 

equal to the output voltage waveform of the previous C-C transfer stage, which is described by 

Equation 2.6 (output waveform of a C-C transfer loop). After the inductor saturates a normal C-C 

transfer, as described in Section 2.2.1 occurs. The total transfer inductance consists o f the saturated
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inductance Lsat and the parasitic inductance Z,par. The parasitic inductance is introduced by the 

electrical connections between the saturable inductor and the input and output capacitors. The MPC 

circuit can be optimised using the same methods as described in Section 2.2.2. Typical voltage and 

current waveforms of a single MPC stage are shown in Figure 2-21.

5
fc3

Iu
oz

Time [a.u.]

Figure 2-21: Voltage and current waveforms in a magnetic pulse compression stage.

The hold-off of the saturable inductor can be clearly seen and the inductor saturates shortly before 

the input waveform reaches a maximum. The timing of the core saturation is discussed in more 

detail in the next section. Furthermore, pulse compression is also visible, where the rise-time of the 

input waveform is much slower than the rise-time of the output waveform. The ratio of the input to 

output voltage rise-time of the nth MPC stage is called the compression ratio gn, with

where rn.\ is the transfer time of the previous (input) C-C transfer stage and rn the transfer time of 

the current C-C transfer stage.
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Voltage hold-off and MPC timing

The hold-off time Zhoid of an MPC stage can be chosen equal to the transfer time r„.\ o f the previous 

transfer stage, but normally the hold-off time is chosen slightly smaller than r„.\ [1]. There are 

mainly two reasons for this choice:

■ Choosing a smaller hold-off time reduces the integral in Equation 2.26, resulting in smaller 

inductor core volumes, as will be seen in the next section.

■ The transfer time in an MPC transfer loop has a finite duration. For better transfer timing the 

main C-C transfer should start before the input voltage reaches a maximum so that the peak 

transfer current of the MPC stage coincides with the time at which the input voltage would 

have reached a maximum. This can be seen in Figure 2-21 where the saturable inductor 

switches when the input voltage has reached approximately 95% of the peak input voltage.

The MPC timing is very sensitive for changes in the pulse voltage, especially for pulse voltages 

larger than the designed for value. For lower pulse voltages the MPC timing is less sensitive. It is 

therefore advisable to optimise the MPC timing for the maximum pulse voltage.

To determine the needed change in magnetic flux of a saturable inductor for a given hold-off time, 

the inductor voltage vi has to be determined first. During the voltage hold-off the saturable inductor 

can be approximated by an open circuit. Considering Figures 2-20 and 2-21 it becomes clear that 

the inductor voltage is equal to the input voltage of the MPC stage during voltage hold-off. As 

mentioned earlier, the input voltage of the MPC stage is described by Equation 2.6, i.e. the output 

voltage of the previous C-C transfer loop. Assuming an optimised ideal circuit without losses 

(a  = 0 ,k =  1) the following inductor voltage waveform is obtained for 0 < t < Zhoid

“ /  \ “

1 -  COS
K

-------1
T ,_ V «-l J _

where V0 is the peak output voltage (i.e. peak pulse voltage) of the previous stage. At this point it is 

important to note, that the peak pulse voltage decreases as the pulse propagates through the MPC 

unit. The stage-to-stage voltage decrease is caused due to losses and matching of the input and 

output capacitors o f the MPC stage for maximum energy transfer (see Section 2.2.2). This decrease 

in pulse voltage has to be taken into account during the MPC design.
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As mentioned earlier the saturable inductor is designed to switch before the transfer in the previous 

C-C stage is completed and the input voltage reaches a maximum. The ratio of the switching 

voltage (input voltage level at which the inductor saturates) and the peak input voltage is called the 

switching ratio ksw with

/, _ (̂ hold ) /r)
K s w ~ --------7 -------- 7 -  ( Z . Z 9 )

A switching ratio o f ksw = 1 will therefore correspond to a hold-off time equal to the transfer 

time r„_i of the previous (input) C-C transfer stage. Normally the switching ratio is chosen 

between 0.9 and 0.95. Smaller switching ratios (ksw < 0.9) will result in incomplete transfer in the 

consecutive C-C transfer stages thereby reducing the transfer efficiency [ 1 ] [41 ]. Using the inductor 

voltage waveform vL{t) the relationship between the hold-off time and the transfer time of the 

previous (input) C-C transfer stage can be determined as a function of the switching ratio:

^ V . - C-0S(1- 2 U . (2.29)
71

The total magnetic flux swing needed for a hold-off time Zhoid can now be determined by using the 

above equation and solving the integral in Equation 2.26. The following result is obtained:

rn-\F, = NAcoreAB = A O , (2.30)

n i - - V O t O
7T

(2.31)

where F, is the timing factor, which is a function of the switching ratio ksw. To illustrate the effect of 

the switching ratio ksw on the required change of magnetic flux content, the timing factor F, is 

plotted as a function o f the switching ratio (see Figure 2-22). A switching ratio ksw = 1 results in a 

timing factor F, = 1 and by decreasing the switching ratio a fast initial decrease in the timing factor 

can be observed [1]. Thus, for a fixed input transfer time rn.\ the needed change in the flux 

content AO can be decreased significantly. Conversely for a fixed AO the transfer time of the input 

C-C stage can be increased, thereby increasing the compression ratio of the MPC stage. 

Consequently, choosing a switching ratio smaller than unity will result in a reduction of the needed 

core volume (see Section 2.3.3) and/or an increase in the compression ratio of the MPC unit. This
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reduces the size and costs of the MPC unit. Choosing switching ratios smaller than one has a 

marginal effect on the transfer efficiency O of the MPC stages. According to S.E. Ball [1] the 

transfer efficiency is reduced by not more than 5% for switching ratios between 1.0 and 0.8.

Switching ratio k „

Figure 2-22: Saturated flux content of the core of a saturable inductor vs. the switching ratio ksw.

2.3.2 Estimate and minimization of total magnetic core volume

An estimate of the total required magnetic core volume can aid in the design and optimisation 

process of MPC circuits. Methods can be determined to minimize the magnetic core volume, 

thereby reducing costs. In general the only two design parameters specified for a MPC unit are the 

overall compression ratio G and the energy Eo of the transmitted pulse. The aim is to determine 

methods to minimize the magnetic core volume.

Firstly, the magnetic volume of a single MPC stage is determined. An ideal system with no losses is 

considered. Furthermore, it is assumed that the C-C transfer loops of the MPC stages are optimised 

(k = 1) and that the parasitic inductance Zpar is negligibly small. Using Equations 2.7, 2.25, 2.27, 

2.29, 2.30 and 2.31 the following general expression for the equivalent magnetic core volume of a 

single MPC-stage is obtained:

V o U *  = A CJ ^  (2.32)
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It is important to note that the equivalent core volume is the product of the equivalent magnetic 

cross-section Acore and magnetic path length /core of the core and is therefore not equal to the true 

magnetic volume. The relationship between the equivalent core volume and the true core volume is 

determined by the core geometry (e.g. toroidal, strip-line, etc). Toroidal cores are widely used for 

saturable inductors in MPC stages and therefore the true core volume Vol t̂oroid for a toroidal core, 

as derived by I. Druckmann, et al. [7], is given by

Vol _ 2 X Msal^g ro +ri j 
s ’toroid g  4 p 2AB2 2(r0 -  r (. )

' r0 + A r '  
Kr < - A r j

(2.33)

where ra and r, are the outer and inner core radii, respectively, and Ar is the winding clearance 

between the inductor windings and the toroidal core.

Nevertheless, Equation 2.32 shows the general relationship between the core volume and the MPC 

parameters. In order to reduce the core volume, the magnetic material must have a low saturated 

permeability and a large flux swing. The timing factor also has a large influence on the core 

volume, seeing that the core volume scales with the square of the timing factor. Normally a 

switching ratio ksw of approximately 0.95 is chosen resulting in a timing factor of F, = 0.75, thereby 

reducing the core volume by 45% compared to a switching ratio o f unity. The compression ratio has 

the largest impact on the core volume and a strategy has to be used to reduce the compression ratio 

of individual MPC stages.

The compression ratio of the individual MPC stages can be reduced by using multiple MPC-stages 

and the total compression ratio of a MPC unit with a number of N  stages is given by

N  T

G T r primary switching unit ^  a \

= l l 2 » = -------------- • (2-34)
n=\ ^  MPC output

Theoretically it can now be shown [7] that the total core volume of the MPC unit can be minimized 

by using equal compression ratios for each MPC stage, i.e. G = The optimum number Nopl of 

MPC stages is

Aropt= 2 1 nG ,  (2.35)

with g opl =V e=1 .64 ,  (2.36)
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where gopt is the resulting optimum compression ratio per MPC stage. Although the conditions 

specified by Equations 2.35 and 2.36 will theoretically result in the minimization o f the total MPC 

core volume, it is just about always not practically viable. The optimum compression ratio gopt is 

relatively small and can result in a large number of MPC stages. A greater number o f MPC stages 

also implies a greater number of capacitor banks for the C-C transfer loops. This can be very costly 

and increases the size, complexity and losses of the MPC unit. On the other hand using large 

compression ratios per MPC stage results in excessive core volumes and can also increase the 

physical size of the MPC unit. There is thus a trade-off between minimizing the magnetic core 

volume and the number of MPC stages. The choice of the number of MPC stages is mainly a cost 

consideration [39] [44],

2.4 Pulse transformers

The primary voltage pulse generated by the switching unit should have a sufficiently high peak 

voltage in order to excite a laser, in this case a mini CO2  TEA laser, for which an excitation voltage 

of between 15 kV and 30 kV is needed. As mentioned earlier there are switching devices with 

which these high voltages can be switched directly, e.g. thyratrons and spark gaps. Unfortunately 

the maximum voltage rating of solid-state switches, e.g. insulated gate bipolar transistors (IGBTs) 

and thyristors, are only a few kilovolts. The generated voltage pulses have to be stepped up with a 

pulse transformer to obtain the high voltage pulses needed for laser excitation. In the case of a 

simple C-C transfer circuit the pulse transformer is simply inserted into the primary switched C-C 

transfer loop as shown in the circuit diagram in Figure 2-23.

1 : a
♦

Lt,s Rt,S +

t,s 
-----►

- •  Output
+ Lt,p Rt,p

Q.

TR
=T= V ~.

C2 C2

S

Figure 2-23: Circuit diagram of C-C transfer loop with pulse transformer.

Transformer characteristics and transformer losses are well documented for utility line and switch 

mode applications, but in laser pulsed power applications much shorter pulses are applied to the
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transformer [43]. In addition, the voltage ratings of the transformer are also above average. In this 

section transformer behaviour and transformer losses are revised for pulsed power applications.

2.4.1 Characteristics of a pulse transformer in a C-C transfer loop

To analyse the behaviour of a pulse transformer in a C-C transfer loop the T-equivalent model of a 

transformer [31] is considered as shown in Figure 2-24. The secondary impedances, voltage and 

current are referenced to the primary side of the transformer, with

L,, = I a > C2 = a C2, vC2 = vC2/ a ,

£ ,:, =  A J “ \  R [ , = R , J a 2 ,

where a is the turns ratio, NJNP, of the pulse transformer with Np the number of primary winding 

turns and Ns the number of secondary turns.

Equivalent pulse transformer model

Figure 2-24: Equivalent T-network pulse transformer model in a C-C transfer loop.

The magnetization impedance Zmag of the transformer consists of the magnetization inductance Z,mag, 

the transformer core losses modelled as a resistance Rcore, and the inter-turns capacitance Cm-

The transformer should not alter the C-C transfer characteristics. Ideally the primary and secondary 

winding resistances Rwp and R ’WiS should be small in order to limit transfer losses. Furthermore, the 

magnetization impedance should be infinitely large, resulting in total current transfer through the

K , s = K j a 2 ,

k s  a h s  ’
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transformer with \itJ)\ = |i In practical transformers the magnetization cannot be infinitely large. 

Nonetheless the transformer should be designed in such a way that the magnetization current is 

much smaller than the transfer current, /mag «  itJ>, resulting in an almost total current transfer 

through the transformer, itJJ = i tj- If this condition holds true, the magnetization impedance can be 

ignored and approximated by an open circuit.

Ignoring the magnetization impedance results in a simplified model of the pulse transformer, 

consisting only of the primary and secondary leakage impedances, which are in series with the 

external transfer inductances, Lt,p and L ’tvS, and resistances, RtJJ and R ’, .̂ The total transfer 

inductance Lt and transfer resistance R, of the C-C transfer loop are therefore given by

A pulse transformer designed according to the abovementioned guidelines can be described by an 

equivalent circuit which is identical to the C-C transfer loops discussed in Section 2.2.1. The pulse 

transformer therefore does not change the characteristics of the C-C transfer loop and only adds 

additional inductance and resistance to the existing external transfer inductance and resistance. The 

equivalent C-C transfer loop can be calculated and optimised just as described in Section 2.2.2, with 

a total transfer inductance and resistance as defined in Equations 2.37 and 2.38.

2.4.2 Leakage inductance

The leakage inductance arises from magnetic leakage flux that does not link the primary and 

secondary windings of the transformer. All practical transformers will have a leakage inductance, 

because total flux linkage between the primary and secondary of the transformer would imply 

spatially overlapping the primary and secondary windings of the transformer. It is important to 

obtain an estimate of the transformer leakage inductance before commencing with the final 

transformer construction. The total primary equivalent leakage inductance can be calculated by the 

following expression [27]:

(2.37)

(2.38)

\ n . H ' d V
y. (2.39)

p
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where Vw is the total transformer winding volume over which the volume integration is performed 

and Ip is the primary transformer current.

2.4.3 Core magnetization

Under normal operation the transformer core may not be saturated, i.e. the magnetic flux density 

generated by the magnetization inductance may not exceed the saturation flux density of the 

transformer core [27]. Saturation of the transformer core will lead to a strong drop in the 

magnetization impedance and an increase in the magnetization current. As discussed earlier the 

magnetization current should be kept small in comparison to the transfer current o f the C-C transfer 

loop. An increased magnetization current due to core saturation may lead to distortion of the 

transformed voltage pulse. Unlike the MPC unit discussed in Section 2.3 the transformer core 

should not be saturated and using the integral Equation 2.26 the following must hold true to prevent

where AB is the maximal allowable flux swing which will not saturate the transformer core, Acore 

the transformer cross-section and Np the primary number of turns. The magnetization voltage vmag is 

the voltage across the magnetization inductance as indicated in Figure 2-24, and during the transfer 

of the voltage pulse

The transformer voltage before and after the transferred pulse is zero. Therefore, ignoring both 

losses and magnetization current and assuming an optimised C-C transfer circuit (C\ = C ’2) 

Equations 2.4 and 2.5 can be used to determine the magnetization voltage

saturation

r

{t)dt < N pAcoreAB = AO , (2.40)
0

Vnug ( 0  =  VCI ( 0  +  (I,,,, + L, p ) ^ -  i, (tt).

(2.41)

0 , elsewhere

Using the above equation and solving the integral in Equation 2.40 results in the following design
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condition that has to be met:

V  T
—  < N  A  A B .2  p  core (2.42)

Just as with the saturable inductors in the MPC unit, the transformer core can also be reset before a 

voltage pulse is applied. As discussed previously, this increases the total available swing in the 

magnetic flux density before the core is saturated, thereby reducing the required core cross-section 

and/or number of transformer turns.

Another important consideration is the core material, e.g. ferrite, laminated iron core, etc. Ferrite 

materials have smaller core losses [27], but in high-voltage applications the relatively small 

saturated magnetic flux density (5sat » 300 mT) results in large core cross-sections and/or large 

number of turns. A small compact transformer design is thus not possible. The problem can be 

overcome by using laminated iron cores or special magnetic cores (Metglass, Finemet, etc.), which 

have larger saturation flux densities.

2.4.4 Transformer losses

Transformer losses consist of conduction (copper) losses, hysteresis losses and eddy current 

losses [27]. The conduction losses are dissipated in the transformer windings, whereas the eddy 

current and hysteresis losses are dissipated in the core and are thus called core or iron losses. In the 

following sections the different transformer losses are analysed. The same type o f losses are 

encountered in saturable inductors [35], but in pulse transformers the losses are more critical, 

because these transformers are normally designed more compact and the power densities are higher.

Eddy current losses

Eddy current losses are mainly obtained in laminated iron cores, where eddy currents are induced in 

the core laminations due to flux changes in the transformer core. The specific eddy current 

losses Pec,sp> i.e. the losses per unit volume, for a continuous applied sinusoidal transformer voltage 

of a laminated core, can be approximated by following expression [27]:

(2.43)
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where d  is the lamination thickness, co the angular frequency o f the applied magnetic field, p COTe the 

resistivity of the core iron and B the amplitude of the sinusoidal variation in the magnetic flux 

density due to an applied sinusoidal transformer voltage. However, in a pulsed power supply the 

magnetic flux in the transformer core is also pulsed. Through Fourier-transform analysis the applied 

pulse can be expressed as a spectrum B(co) of superimposed sinusoidal waveforms [43], each of 

which are contributing to the eddy current losses. In general the eddy current energy loss Zsec,sP due 

to a single applied voltage pulse can be obtained by using Equation 2.43 and integrating over the 

bandwidth of the applied voltage pulse:

, (2.44)
- o o  r 'core

where B(co) is the amplitude frequency spectrum of the magnetic flux density obtained by applying 

a voltage pulse to the transformer. The temporal waveform of the magnetic flux density can be 

obtained from the magnetization voltage vmag with

S ( ' )  =  - T T ^ —  J v _  ( < ' ) * ' .  ( 2 .4 5 )
p core - o o

The spectrum of the magnetic flux density o f a pulse transformer used in a C-C transfer loop can 

now be obtained by considering the magnetization voltage given by Equation 2.41. In most 

transformer designs the total transfer inductance Lt of the C-C transfer loop is divided evenly 

between the primary and secondary side o f the transformer, with L,j, + Z,/  ̂ = L ’tJi + L ’/  ̂ = !4Lt. 

Equation 2.41 can hence be simplified:

V ~ , ( < ) = { f  - f M 0 £ ' £ r . ( 2 .4 6 )

lO .elsewhere

The magnetization voltage is therefore approximated by a rectangular pulse with amplitude V o /2  

and width r. Using Equations 2.45 and 2.46 the spectrum of the magnetic flux density can be 

determined [31]:

sin —
» W = 3 { J (< ) )^  \ 2 y , (2.47)

CD1
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where AB is the flux change induced by the applied voltage pulse. Using the above equation and 

solving Equation 2.44 yields the eddy current loss £ ec,sP|cLC for a single pulse passed through the 

transformer used in a C-C transfer loop [13]:

| _ d 2AB2 4/r
ec's p l c i c  ~  2 4 p  7

rc o recore
(2.48)

For a pulse repetition rate o f /rep the eddy current power loss Pec,sp|cLC is simply

(2.49)

It is interesting to note that for switch mode power supplies the eddy current loss can now be 

estimated by Equation 2.43, with co = 2rfs, [27] where f s is the switching frequency, which is 

comparable to the repetition rate in pulsed power supplies, i.e f s » / rep. From this it can be shown 

that the ratio of the eddy current loss in pulsed power supplies to switch mode supplies is

where D  is the duty cycle of the applied pulses, with D  = r lT Kp, where r  is the pulse width and Trep 

the period between pulses (Trep = l//rep). However, in pulsed power supplies D «  1 ( t «  7’rep) and 

eddy current losses in pulsed power supplies are therefore much higher compared to switch mode 

supplies. Care must be taken to provide adequate cooling for the transformer core in pulsed power 

applications.

Hysteresis losses

Hysteresis losses are a function of the core material and the amplitude of the applied magnetic field. 

The energy per unit volume £hys,sP dissipated in the transformer core due to hysteresis losses after 

traversing the BH-curve of the core once is given by the well-known equation [13]

Pec,sP(Pulse Power) i

Pec sp (switch mode) tzD  ’
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Since in a pulsed power supply the BH-curve is traversed with each generated pulse, the power 

dissipated per unit volume due to hystersis losses is similar to transformers used in switch mode 

power supplies and is given by

P = f  Fhys,sp J  rep hys,sp ’ (2.50)

where/rep is the repetition rate of the applied pulses.

Conduction (copper) losses

The conduction losses can be calculated straightforward from the RMS primary and secondary 

transfer currents (see Figure 2-24), with

with Rw,p and RWyS the primary and secondary winding resistances, respectively. The transfer RMS 

currents can be calculated using Equation 2.21. Ignoring the skin effect the primary winding 

resistance is given by the following expression [27]

where lp is the average length of a single turn, pcu the resistivity o f copper, Awp the primary winding 

area and pp the copper fill factor of the primary winding. The secondary winding resistance can be 

calculated in a similar fashion.

The total winding window cross-section Aw is the area enclosed by the transformer core and into 

which the transformer windings are placed. The primary and secondary winding windows Aw,p 

and Aw,s are the portions of the total winding window occupied by the primary and secondary

(2.51)

and (2.53)
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windings, respectively. The copper fill factor p  is the ratio of the total conductor area to the winding 

window area and is given by

P = ̂ T L , (2.54)

where An is the conductor cross section and N  the number of turns. The fill factor is mainly 

determined by the winding wire configuration (ribbon wire, Litz wire, etc.) and the amount of 

insulation, and may range between 0.2 and 0.6 [27].

The conduction losses can also be expressed in terms of the primary and secondary RMS current 

densities J<,Pjr m s  and JtiS,RMS-

^cu = PpAW'PN  pl pJ lpRMS + p sAwsN slsJ lsRMS, (2.55)

where the current density is simply JrmS = Irms/An-

2.5 Conclusion

A C-C transfer topology is chosen for the IGBT driven pulsed power supply and a directly switched 

C-C transfer loop is utilized in the primary switching unit. The MPC unit is based on a series 

magnetic pulse compression topology.

It is found that the transfer efficiency of C-C transfer loops in laser pulsed power supply designs 

can be optimised with ‘design method B’ by fixing the output capacitor and varying the input 

capacitor of the C-C transfer loop as described in Section 2.2.2. Furthermore, it is shown that the 

switching current of a directly switched C-C transfer loop can be decreased by increasing the 

transfer time and/or the charging (switching) voltage of the C-C transfer.

The magnetic core volume of the MPC can be reduced by using switching ratios o f less than unity 

(i.e. the MPC stages o f the MPC unit are timed to switch before the transfer in the previous MPC 

stage is completed), resetting the MPC saturable cores and by optimising the number of MPC 

stages. The theoretical optimum number of MPC stages, which will minimize the core volume, is
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not necessarily the most economical solution. Costs of the C-C transfer capacitors and construction 

costs have to be taken into account.

To increase the pulse voltage to the required level a pulse transformer can be simply inserted into a 

C-C transfer loop. The magnetization impedance of the transformer has to be large compared to the 

transfer impedance. The short voltage pulses obtained in pulsed power supplies can result in larger 

eddy current losses compared to other applications (e.g. switch mode power supplies) and special 

care must be taken to cool the transformer core.
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Chapter 3

Characteristics of an IGBT in a laser pulsed 

power supply

In the previous chapter different pulsed power supply topologies and layouts were discussed and it 

was concluded that for this project the initial voltage pulse is generated by a switched C-C transfer 

loop. An IGBT will be used as the active switching device. A large amount of information is 

available on the switching behaviour of IGBTs in switch mode power supplies, but little is known 

on the switching behaviour o f IGBTs in pulsed power supplies. The main difference between switch 

mode and pulsed power supplies is the switched current waveform. In switch mode power supplies 

existing circuit (inductor) currents are switched [27], whereas in a pulsed power supply the main 

switching current is only obtained after the IGBT has turned on. The turn-on transient o f an IGBT 

in a pulsed power supply is therefore different than in switch mode power supplies. In the following 

sections the turn-on transient of an IGBT in a C-C transfer loop is analysed using an equivalent 

circuit model. Furthermore, aspects like over-current ratings, thermal characteristics, series stacking 

and paralleling of IGBTs are discussed.

3.1 IGBT circuit model

Before analysing the transient response o f an IGBT in a C-C transfer loop the general 

characteristics of an IGBT have to be considered. The IGBT is a combination of a BJT (bipolar
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junction transistor) and a MOSFET (metal-oxide-semiconductor field-effect transistor) as shown in 

Figure 3-1. The input of the IGBT therefore resembles the input gate of a MOSFET whereas the 

output resembles a BJT. Similar to a MOSFET the IGBT is a voltage-controlled device, where the 

collector-emitter current z'c is controlled by the gate-emitter voltage vge-

C

=  chT
■K

GE *  E

Figure 3-1: IGBT as a combination of a MOSFET and BJT.

Typical transfer functions of an IGBT are shown in Figure 3-2, where the collector current z'c is 

plotted as a function of the collector-emitter voltage vce for different gate-emitter voltages vge- The 

collector current is clearly a function of both the gate-emitter and collector-emitter voltages. Three 

operating regions can be identified:

1. vce < vc£(sat): In this region the collector-emitter voltage is relatively constant with a slight 

dependence on the collector current. The collector-emitter voltage can be approximated by a 

constant on-state voltage drop Von with a small equivalent collector-emitter resistance tCe,

VC£,on = ôn + rCE*C (3-1)

The on-state voltage drop of an IGBT is typical for a BJT, resulting in lower conduction 

losses in comparison to MOSFET’s [27]. In this operating region the collector current is 

determined by the external circuit components and if the IGBT is used in switching 

applications this corresponds to the on-state of the IGBT.

2. vce > vcf(sat): In this region the IGBT saturates and the collector-current is limited with the 

saturated current determined by the gate-emitter voltage as shown in Figure 3-3. The 

collector-current depends only slightly on the collector-emitter voltage, which can be 

modelled by the “early effect” [29], but will be ignored in this discussion. The IGBT
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therefore resembles a voltage controlled current source where the saturated collector current 

is given by the following equation:

zc(sat) = k(vGE ~ vn )2, (3.2)

where k is a constant, which depends on semiconductor doping and wafer geometry of the 

IGBT [29]. This region is not desirable in switching applications, due to the high power 

dissipation in the IGBT. Therefore, if  the IGBT is used in switching applications, care must 

be taken that the collector current does not exceed the saturated current during the on-state. 

Excessive collector-currents will force the IGBT into saturation, thereby causing a sudden 

increase in the collector-emitter voltage coupled with large power dissipations.

3. vge < Vn'- If the gate-emitter voltage is below a given threshold voltage Vn no collector 

current can flow and the IGBT turns off.

250

200

tj
■s 1504)
b
8
2  ioo 
g =5U

50

...1 1
saturated (current
limi ted) region

= 7.5 V -v i

[I v ce(sat)

\ y v ic = 7.0 V

i v ie = 6.5 V

V v se = 6.0 V

0 5 10 15 20

Collector-emitter voltage v CE [V]

Figure 3-2: Transfer characteristics of an IGBT.

Gate-emitter voltage v c, e  [V]

Figure 3-3: Saturated collector current o f an 
IGBT as a function of the gate-emitter voltage.

The equivalent circuit model [27][29] of the IGBT is shown in Figure 3-4 and is similar to a 

MOSFET. The voltage-dependent current source Gc is the active component with a transfer 

function as described earlier and shown in Figures 3-2 and 3-3. The remaining circuit elements Cgc, 

Cge, Lc and Lg are the parasitic capacitances and inductances o f the IGBT, which dictate the 

dynamic response o f the IGBT as discussed in the next section.
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Figure 3-4: Equivalent circuit model of an IGBT.

3.2 IGBT dynamic response in a C-C transfer loop

As mentioned earlier in switch mode supplies the IGBT switches an existing circuit (inductor) 

current. However, in a pulsed power supply there is no initial current during turn-on and a 

sinusoidal current pulse, generated by a C-C transfer loop, is obtained after turn-on (see Chapter 2). 

In order to analyse the IGBT turn-on transient, the IGBT model shown in Figure 3-4 has to be 

considered within a C-C transfer loop as depicted in Figure 3-5.

Figure 3-5: Equivalent circuit model of an IGBT in a C-C transfer loop.
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The parasitic inductances have been ignored, because the collector inductor Lc is in series with the 

transfer inductance L, of the C-C transfer loop, where Lt »  Lc. The gate inductor Lg can also be 

ignored, because the external gate resistor is normally chosen big enough to sufficiently dampen 

possible oscillation that can be caused by the gate inductor and the parasitic capacitances Cge 

and Cgc. As discussed in Chapter 2, the IGBT is initially in the off-state. The input capacitor C\ is 

charged to an initial voltage Vo, which is equal to the initial off-state voltage drop over the IGBT.

Evidently the IGBT is turned on by applying a positive voltage step to the gate, which is achieved 

by connecting a voltage source via a gate resistor to the gate of the IGBT as depicted in Figure 3-5. 

In general three phases can be identified (Figure 3-6) in the turn-on transient o f the IGBT [17][27]:

1. Turn-on delay time, td: After a positive voltage step has been applied to the gate o f the IGBT 

there is a turn-on delay. This is the time needed for the gate-emitter capacitor Cge to charge 

up to a voltage larger than the threshold voltage Vn in order to turn the IGBT on.

2. Voltage fall-time, tf. The gate-collector (Miller) capacitor is initially charged to a voltage 

equal to the off-state voltage of the IGBT. The fall-time tf is the time needed for the 

collector-gate capacitor Cgc to discharge and the voltage over the IGBT to drop. During this 

transient phase (between the on- and off-state) the IGBT is in a saturated state and the gate- 

emitter voltage is clamped.

3. On-state: After the voltage fall-time, the IGBT eventually reaches the unsaturated on-state 

with vce < vcf(sat), as described in the previous section. The gate-emitter voltage is not 

clamped anymore and increases to the maximum applied gate-emitter voltage, thereby 

further reducing the IGBT on-state voltage drop.

Figure 3-6: General turn-on switching waveforms of an IGBT.
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In the following sub-sections each of the earlier mentioned phases o f the turn-on transient of the 

IGBT within a C-C transfer loop is revised in more detail.

3.2.1 Turn-on delay

The turn-on delay in pulsed power supplies is identical to switch mode power supplies. During the 

turn-on delay period the gate-emitter capacitor is charged by the externally applied voltage Vq 

through the external gate resistor Rg- The gate-emitter voltage is still below the threshold 

voltage VTh and the IGBT is in an off-state with zero collector current. During this phase very little 

current is flowing through the gate-collector capacitor and the gate-collector capacitor can be 

ignored. The equivalent circuit for this state is shown in Figure 3-7.

Rg
-------------- A V ------------

vg

GE
Cge

Figure 3-7: Equivalent circuit model during the turn-on delay.

From Figure 3-7 it becomes apparent that the circuit is a simple RC charging loop, with

f  /  \  
i _ e A c-

V

, for vge< V n , t< td .
/

(3.3)

The turn-on delay time is therefore

td = R gCge In
v

, with vGE{ td) = Vn (3.4)

3.2.2 Voltage fall-time

As soon as the gate-emitter voltage reaches the threshold voltage Vn the IGBT starts conducting in 

a saturated state [27] and a current-rise through the transfer inductor L, is initiated. If the voltage 

fall-time tf is much faster than the initial current-rise of the transfer current ir the transfer current
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can be ignored. The transfer inductance effectively decouples the IGBT from the C-C transfer loop 

during the turn-on transient, but only if the IGBT switches fast enough in comparison to the transfer 

time t of the C-C loop. Decoupling is desirable, because it decreases the voltage fall time and 

reduces switching and conduction losses in the IGBT. Criteria for effective decoupling are 

discussed in Section 3.2.4.

The equivalent circuit during the voltage fall-time period tf is shown in Figure 3-8 where the C-C 

transfer loop is ignored due to the decoupling effect of the transfer inductance. The collector-gate 

capacitor Cgc is initially charged to V0, which is equal to the off-state voltage drop of the IGBT.

v c e

Figure 3-8: Equivalent circuit during the voltage fall period.

As seen in Figure 3-3 and Equation 3.2 the relationship between the collector current and the gate- 

emitter voltage is non-linear. In order to simplify the circuit analyses Equation 3.2 is linearized for a 

gate-emitter voltage close to the threshold voltage, vge = Vn,

* C  =  k { V G E  ~ ^ T h )  =  a i V G E  ~  VT h  )  ’ ( 3 - 5 )

where a is the linearized trans-conductance of the IGBT. From Figure 3-8 it is apparent that the 

maximum possible collector current is equal to the maximum gate current, z'G,max = (Vg -  VnyRg- 

Therefore, for this analysis the trans-conductance a is approximated for the collector current range

0  < ic < i'amax, with
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From Figure 3-8 it is clear that ic = ige + ic- Now using Equation 3.5 and the derivative of the gate- 

emitter capacitor voltage, the following differential equation is obtained

! j - * * = r ^ + a ( v o c - r n ). 
Rg ge dt K ge Th)

(3.7)

The solution to the above linear differential equation with a starting condition of vcE(td) = Vn is

V - Vy g Th

1 + aR„
l - e  RgC-

l+aRi, ^  -( '- 'J
, for vqe > V n , t> td - (3.8)

The IGBT collector current ic, which is also the discharging current of the gate-collector (Miller) 

capacitor, can be determined by using Equation 3.5 with

• M  v* - y» ic \ t )= a 1 + aR„
l - e  * g

I+aRg \  
(‘-‘j

, for t > td . (3.9)

Normally in high-voltage, high-power IGBTs the product aRg is relatively large (see Appendix C), 

with aRg »  1. From Equation 3.8 it is apparent that for aRg »  1 the gate-emitter voltage is 

clamped just above the threshold voltage and it can be assumed that the gate-emitter voltage is more 

or less equal to the threshold voltage, vGE = Vn, during the voltage fall-time period. Furthermore, 

Equation 3.9 can be simplified for aRg »  1:

with

V -  V

R.

—e-('-»*) (  -(<-<<Yr 1l - e  - = i c l - e  ''  Tequ

V \ /

and r  = -equ
ge

, for t > t d , (3.10)

The collector current behaves similar to the current build-up in an RL-circuit with an equivalent 

time-constant requ and a steady state current Ic- In the steady state the gate-emitter current icE drops 

to zero and the gate-emitter voltage stabilises and stays constant. As a consequence the entire gate
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current ic flows through the gate-collector capacitor of the IGBT. The steady-state gate current Iq 

and gate-emitter current Iqe are

-  -  K - y n
(3.11)

Rt

IGE =  0 .  ( 3 . 1 2 )

Usually the equivalent time constant requ is much faster than the voltage fall-time t f .  It can be 

assumed that the gate-collector capacitance CgC is discharged by the constant steady state 

current Ic [27], The gate-collector capacitor is discharged until the IGBT collector-emitter voltage 

drops below the saturated voltage threshold vC£-(sat) and the IGBT has reached the on-state region 

as described in previous sections. The time for the gate-collector capacitor to discharge and the 

IGBT to reach the on-state is equal to the voltage fall-time t f ,  which is given by the following 

equation:

t f  = ---------7 ---------- - ^ - 7 ^  =  7 7 f ° r  t { »  f e q U. ( 3 . 1 3 )
1 C l C V g  Th

Normally the initial collector-emitter voltage Vo is much larger than the on-state voltage 

drop v c e ( on) and the on-state voltage drop can be ignored in the calculation of the voltage fall-time. 

The discharge rate and thus the voltage fall rate of the IGBT is given by the following expression:

vCE = 7 ^ = VgD - J n  > for t{»  requ. (3.14)
gc g gc

The voltage fall-time can be reduced by either increasing the externally applied gate voltage or 

reducing the value of the gate resistor Rg. However, there is a limit to both the applied gate voltage 

and the value o f the gate resistor. The gate voltage may not exceed the rated gate voltage of the 

IGBT; otherwise the gate insulation can be destroyed. Furthermore, a too small gate resistor can 

result in oscillations o f the gate-emitter voltage due to insufficient damping of the gate-emitter 

capacitance and the gate inductance. The minimum usable gate resistor is normally specified in the 

data sheets of the IGBT.
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3.2.3 On-state

After the voltage fall-time period the IGBT reaches the on-state region and conducts in the 

unsaturated state with a relatively constant collector-emitter voltage. The gate-collector current 

drops to almost zero and there is no significant voltage change over the gate-collector capacitor. 

The collector current is now equal to the C-C transfer current i,. The equivalent circuit model during 

the on-state is shown in Figure 3-9.

Figure 3-9: Equivalent circuit during the IGBT on-state.

The gate circuit is identical to the circuit model during the turn-on delay period. After the voltage 

fall-time period the gate-emitter voltage is no longer clamped and the applied gate voltage resumes 

charging the gate-emitter capacitor. As the gate-emitter voltage increases to the finally charged 

voltage Vg, the on-state voltage is decreased and the maximum possible saturated collector 

current /c{sat) is increased as shown in Figure 3-3. It is important that the gate-emitter voltage has 

increased to a sufficiently high level before the C-C transfer current reaches a maximum. Otherwise 

the IGBT will saturate, clamping the transfer current and inducing a sudden voltage rise over the 

IGBT. Normally this is not a problem though and the gate-emitter capacitor is almost fully charged 

after only a few tens o f nanoseconds.
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3.2.4 Decoupling criteria and magnetic assist

The analysis in Section 3.2.2 was conducted for the special case where the IGBT switches much 

faster than the response time of the C-C transfer loop. This will reduce the switching losses and the 

voltage fall-time, due to the decoupling of the IGBT switching transient from the C-C response. In 

the following analysis it will be shown that sufficient decoupling is obtained, when the maximum 

possible current rise in the IGBT’s collector-current is much higher than the initial current rise in 

the C-C transfer loop.

from CLC-loop

Figure 3-10: Equivalent circuit during initial voltage fall-time with injection o f an external C-C 
transfer current.

The circuit diagram shown in Figure 3-10 is identical to the diagram shown in Figure 3-8 in the 

previous section, but takes the effect of the external C-C transfer current it into account. From 

Figure 3-10 a basic equation describing the gate-collector current ice can be derived:

*GC “  *G ZG £ _  *G C ge
dv,GE

dt

Using Equation 3.5 and the fact that ic = z'cc + it, the expression for the gate-collector current above 

can be rewritten as

a dt a dt <3 1 5 >
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Ignoring the contribution of the transfer current in the above equation will result in a differential 

equation which is equivalent to Equation 3.7, with the solution given by Equation 3.9. The 

introduction of an additional current rise due to the C-C transfer current will clearly decrease the 

gate-collector current. This decreases the discharge rate of the gate-collector capacitor and increases 

the voltage fall-time. The rise in the C-C transfer current effectively decreases the portion of the 

gate current flowing into the gate-collector capacitor. To minimize the effect o f the C-C transfer 

current the transfer current should be kept sufficiently small:

di^
dt
*c a - c «  —  i, (3.16)

ge

Equivalent to the analysis in Section 3.2.2 the collector current is relatively small and the gate- 

emitter voltage is clamped close to the threshold voltage Vn- The gate current can therefore again 

be approximated by ic = (Vg -  Vn)!Rg■ In Chapter 2 an expression for C-C transfer current was 

derived and is shown here again for convenience:

with

i'(()= Io  sin 

nE,

, 0  < t < t , (no losses)

7 0 = rVn

(3.17)

where r  is the transfer time of the C-C loop, Eo the stored energy in the input capacitor o f the C-C 

loop and Vo the initial charging voltage of the input capacitor. The initial current rise in the C-C 

loop, which is also the maximum IGBT current rise, is

di, ( \ dit —L(max) = —-  
dt ’ dt

- I  - E 0 n
- i 0

,=o r Vo , 7 ,
(3.18)

Using Equations 3.16 and 3.18 the decoupling criteria of the switching transient of an IGBT in a 

C-C transfer loop can be determined:

\ n- «
a V -  VY g Th

ge
(3.19)

52

Stellenbosch University http://scholar.sun.ac.za/



Often the charging voltage Vo is determined by the IGBT voltage rating and is therefore more or 

less fixed. Furthermore, the transfer energy Eo of the C-C loop is fixed by the design specifications 

of the pulsed power supply. The transfer time x of the C-C loop has to be adjusted to assure 

decoupling o f the IGBT during the turn-on transient. Consequently, it is useful to rewrite Equation 

3.19 to obtain the decoupling criteria for the C-C transfer time:

X » K

or r  »  nl,

'y 0
(3.20)

(3.21)

In cases where the decoupling criteria cannot be met a magnetic assist [12] can be used. This is 

simply a saturable inductor placed in series with the C-C transfer circuit (see Figure 3-11). The 

voltage hold-off of the saturable inductor, as discussed in Chapter 2, delays the transfer current, 

allowing the IGBT to first fully switch on before the magnetic assist saturates and a 

C-C transfer is obtained.
Lt

--------------- HfGTT'----------------

C1-L

HV«-

C 2-L

fe/ ' 1jg Magnetic assist

IGBT #1

vg
I----- </W-

1  Rg

Figure 3-11: IGBT turn-on transient decoupling by magnetic assist.

3.2.5 Simulations of IGBT turn-on transient

The response o f the IGBT in a C-C transfer loop was simulated with PSpice, a circuit simulation 

program. The PSpice model of an IGBT was obtained from Semikron, one of the IGBT 

manufacturers. The results of the simulated turn-on transient for a high-voltage, high-current IGBT 

(SKM300GB124, a 1200V / 300A IGBT from Semikron) are shown in Figures 3-12 and 3-13.
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Figure 3-12: IGBT gate-emitter and collector- 
emitter voltages during the turn-on transient.

Time [ns]

Figure 3-13: IGBT gate-emitter and gate- 
collector capacitor currents during the turn-on 
transient.

Figure 3-12 shows the gate-emitter and collector-emitter voltages and Figure 3-13 the gate-emitter 

and gate-collector capacitor currents. In both graphs the three phases in the turn-on transient can be 

clearly seen. During the turn-on delay the gate-emitter capacitor charging current is clearly visible. 

As predicted by Equation 3.8 the gate-emitter voltage is not immediately clamped at the beginning 

of the voltage fall-time period, but still increases for a relatively short period of time before it is 

eventually more or less clamped above the threshold voltage. As expected the gate-emitter current 

quickly drops to zero during the voltage fall-time period. At the same time the gate-collector current 

rapidly increases from zero to a more or less constant steady-state current, which discharges the 

gate-collector capacitor. The transition from the voltage fall-time period to the on-state can also be 

distinguished. Both the gate-emitter current and voltage abruptly start increasing as the gate-emitter 

capacitor continues to charge.

There are some differences between the simulated and theoretically predicted results, especially the 

voltage fall-time, which seems to be much faster than expected. Theoretically the collector-emitter 

voltage should decrease linearly during the voltage fall-time period. Instead the simulated 

waveforms show that the main decrease in the collector-emitter voltage is obtained over the first 

part of the voltage fall-time period. The model used for the transient analysis as shown in Figure 3-4 

is very simple and it can be expected that a more realistic model, such as the one used for the
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simulation, will yield different results. Nonetheless, the basic processes o f the turn-on transient are 

explained by the simple model and is sufficient the analysis in this chapter.

The response of the IGBT for an adequately and inadequately decoupled C-C transfer loop during 

the switching transient is also simulated. The results are shown in Figure 3-14. The same IGBT 

model as for the previous simulation was used. The simulated IGBT, the SKM300GB124D from 

Semikron, has a gate-emitter capacitance of Cge = 11 nF, a threshold voltage Vn = 5.5 V and the 

linearized trans-conductance is approximately a = 25 A/V. Furthermore, a gate voltage of Vg = 18V 

was used and the C-C transfer loop is initially charged to Vo = 1000 V with a stored energy of 

Eo = 1 J. Using Equation 3.20 it was calculated that for sufficient decoupling the transfer time of the 

switched C-C loop should be greater than 2 ps. The IGBT tum-on transient was simulated for a C-C 

transfer time of 6  ps and 2 ps. For the C-C transfer with a transfer time of 6  ps the IGBT switching 

behaviour is satisfactory, i.e. as soon as the IGBT switches the voltage over the IGBT drops quickly 

to zero and the C-C transfer current pulse is obtained. Whereas for the C-C transfer with a transfer 

time of 2 ps the current rise of the C-C transfer loop is too large. The IGBT is not capable of 

turning on completely. The need for sufficient decoupling during tum-on is therefore clearly 

demonstrated in this simulation.

Time [ t̂s]

Figure 3-14: Simulated IGBT tum-on transient demonstrating the effect of decoupling.
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3.3 Conduction losses and thermal design considerations

It is important to determine the conduction losses, which is necessary for thermal design 

considerations. The turn-on switching losses are ignored, because for sufficient decoupling as 

discussed earlier, the collector current is negligibly small and the switching losses are therefore 

minimal. Another aspect, which has to be taken into account, is the fact that in a pulsed power 

supply the IGBT switches short pulses with large instantaneous power dissipation, but with a very 

small duty cycle. A simple steady state thermal analysis is therefore not valid and a transient 

thermal analysis is needed to determine the instantaneous temperature inside the IGBT.

3.3.1 Average conduction losses

As indicated in Figure 3-15, the conduction losses are caused by the switched current pulses, which 

generate comparatively large power dissipation in the IGBT during the pulse period.

Power
losses

°IGBT,peak -

PlGBT

Instantaneous 
power dissipation

Figure 3-15: Power dissipation in an IGBT in a pulsed power supply.

The average pulse power dissipation P igbt,pulse in the IGBT during the duration o f the switched 

pulse can be calculated from the on-state voltage drop defined by Equation 3.1 and the average and 

RMS pulse switching currents given by Equations 2.18 and 2.19:

= V I 'IGBT,pulse on s,avg 1 ^ ^  C£ s,RMS|pujse J s,peakl V  +  —  r  Ton 2 CfTj,peak (3.22)
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The average conduction losses Pigbt of a continuously switched pulse train can now be obtained by 

multiplying the pulse power dissipation P i g b t ,pulse with the effective duty cycle D  o f the switched 

pulse train:

■^IGBT “  -^^IG B T ,pu lse  _  ^ s . p e a k
f 2 1 N— V + — r Jon r\ CE j,peakn  2  j

(3.23)

where D - -----= f t ,rrI J  rep 7 
rep

with t the transfer time of the C-C transfer loop and / rep the repetition rate of the switched pulses. 

The values for Von and rcE are normally specified in the manufacturer’s data sheets of the IGBT.

3.3.2 Thermal considerations

In a pulsed power supply the IGBT is heated by the switched pulses, which cause relatively high 

instantaneous power dissipation in the IGBT. With each switched pulse the relatively large power 

dissipation causes the internal junction temperature of the IGBT to increase steeply. During the 

period between pulses there is no power dissipation and the junction of the IGBT is allowed to cool 

down again. Therefore, for a continuous pulse train the temperature difference A7}c between the 

internal junction and outer case temperatures has a ripple [16], which varies around an average 

temperature difference A7}Cjavg as shown in Figure 3-16. The average temperature difference A7}Ciavg 

is simply given by

~ R/hjc -̂ IGBT > (3-24)

with RthjC the steady-state thermal resistance between the junction and case of the IGBT. The peak 

temperature difference AT^peak can be calculated in a similar fashion, but using the transient 

thermal impedance ZthjC and the peak pulse power dissipation P ig b t ,pulse of the switched pulse [16]

A T ’yc.peak =  Z th jc  F IGBT,pulse * ( 3 - 2 5 )
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A7>

Figure 3-16: Junction-case temperature difference of an IGBT in a pulsed power supply.

The transient thermal impedance takes the heat capacities of the different internal structural layers 

(e.g. silicone substrate, metallic contacts, etc.) of the IGBT into account and is therefore a function 

of both the pulse duration and the duty cycle. Manufacturers normally give adequate specifications 

of the transient thermal impedance in the data sheets of the specific device. An example o f a typical 

graph showing the transient thermal impedance of an IGBT (SKM300GB174D, 1700V/300A IGBT 

from Semikron) is shown in Figure 3-17. For long pulse durations and for duty cycles close to unity 

the transient thermal impedance corresponds to the steady state thermal resistance RthjC- From 

Figure 3-17 can also be seen that for short pulses the transient thermal impedance can be much 

smaller than the steady state thermal resistance. Therefore, IGBTs are able to handle very large 

instantaneous power dissipations, which can be far beyond the average power handling capability of 

the device due to the heat capacity of the semiconductor wafer and special heat absorbing gels 

inside the IGBT.

Figure 3-17: Typical graph specifying the transient thermal impedance o f an IGBT.
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Care must now be taken to keep the junction temperature 7} below the specified upper temperature 

limit. Although theoretically IGBTs can work with a junction temperature up to 150 °C, in practice 

the junction temperature should not exceed 100 °C. For higher temperatures the performance of the 

IGBT may degrade [21] and the lifetime of the device is shortened. For a given ambient 

temperature Ta the peak junction temperature is now given by

/̂,peak = Îhjĉ IGBT,pulse + + t̂hsa ̂ IGBT + â > (3.26)

where R,hcs is the thermal resistance between the case and the externally mounted heat sink and R,hsa 

is the thermal resistance from the heat sink to the surrounding environment.

Finally, it is very important to realize that even if the peak junction temperature o f the IGBT is kept 

below the specified upper temperature limit, the short high dissipative pulses switched by the IGBT 

can induce very fast increases in the junction temperature. This leads to large temperature gradients 

inside the silicone wafer and between structural layers of the IGBT, causing large and potentially 

damaging thermal stresses. The thermal stresses can furthermore propagate the formation and 

growth of cracks inside the silicone wafer [6 ], thereby degrading the device and reducing the 

lifetime of the IGBT. The formation and growth of cracks inside the IGBT is difficult to predict and 

it is important to conduct lifetime tests to determine whether a specific IGBT is suitable for the 

target application. More information on lifetime testing and reliability o f IGBTs in pulsed power 

supplies is given in Chapter 6 .

3.4 Series stacking and paralleling of IGBTs

In the previous sections only a single IGBT was considered, but in order to increase either the 

switchable current or voltage IGBTs can be connected in parallel or in series, respectively.

3.4.1 Series stacking

It is advantageous to stack IGBTs in series in order to increase the switchable voltage. Increased 

switching voltages will result in smaller transfer peak currents as discussed in Chapter 2. Hence,
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cheaper IGBTs with lower current ratings can be used.

The circuit diagram of a C-C transfer loop, which is switched by a stack of series-connected IGBTs 

is shown in Figure 3-18. Each IGBT is switched by a separate floating gate voltage Vg. All gate 

voltages are triggered simultaneously to turn on the IGBT stack. Parallel biasing resistors are 

connected to the IGBTs to ensure equal voltage sharing during the IGBTs off-state. Parallel 

capacitors for dynamic voltage sharing were not added, because this leads to increased switching 

times of the IGBT.

Sufficient decoupling from the C-C transfer loop as described in Section 3.2.4 will also result in 

decoupling of the IGBTs from each other. The voltage decrease over the IGBTs during the turn-on 

transient causes a corresponding voltage increase over the transfer inductance. Thus, with sufficient 

decoupling the voltage decrease over individual IGBTs will only cause an increase in the inductor 

voltage without an increase in voltage over other IGBTs. Consequently, faster switching devices 

will not cause an over-voltage over the slower switching devices and inherently voltages are equally 

shared between the IGBTs. Measurements on series-connected IGBTs are shown in Chapter 7.

HV

vg

vg

vg

Figure 3-18: Circuit diagram of series-stacked IGBTs in a C-C transfer loop.

Drawbacks of series-stacked IGBTs are short-circuit failures and gate drive failures. A short-circuit 

failure of one or more IGBTs in the series stack will result in an increase of voltage across the

u

C 1 -L C 2-L

IGBT#N< 

|----- W -----
1  Rg
I___________

IGBT #2

I-------- * /W -
1  Rg

I_______

IGBT #1*

I----- AV---- X̂ Lz
I  Rg ^
I______
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remaining IGBTs, which in turn can lead to over-voltage failure of the remaining devices. 

Furthermore, a gate drive failure o f an IGBT will disable that IGBT resulting in the total switching 

voltage being dropped across the IGBT when the remaining IGBTs turn on. This will also lead to an 

over-voltage failure o f the corresponding IGBT.

3.4.2 Paralleling

A different approach with which the maximum switchable current can be increased is the 

paralleling of IGBTs. In order to obtain equal current sharing between the paralleled IGBTs the 

circuit shown in Figure 3-19 can be used. The total transfer inductance Lt and storage 

capacitance C/ are split between the number (N) of paralleled IGBTs. To obtain a total equivalent 

transfer inductance L, each split transfer inductance L,' must be L /  = N-Lh because the individual 

transfer inductances are effectively in parallel. Similarly each split storage capacitor Cs' must be 

CS' = L,/N.

vg

Lt-N

C1/N =L;

HV # -

N

r
IGBT #1

v w — <D
Rg vg

Lt-N

C1/N=L

H V * -

IGBT #2

N

vW-----w\
Rg

Lt-N

CI/N^L

vg

IGBT #N

r - t r - 4  
i ________

_ T

N

C2-L

Figure 3-19: Circuit diagram of paralleled IGBTs in a C-C transfer loop.

It was found that IGBT modules are more sensitive to over-voltages than over-currents and this type 

of layout is more robust than series-stacked IGBTs. The drawbacks encountered with series 

stacking are not encountered with paralleling o f IGBTs. In case o f an IGBT short-circuit failure the 

high-voltage charging supply will simply be shorted out without causing over-voltages on the 

remaining IGBTs. Another advantage is that the IGBTs in a parallel layout are all grounded at the 

emitter, thereby allowing the IGBTs to be directly driven by the same gate driver unit. However, the 

lower switchable voltage of the paralleled IGBTs will necessitate the use of a step-up transformer
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with a larger turns ratio and current rating. This can lead to increased transformer leakage 

inductance and primary conductor sizes. The parallel layout is also ideally suited for LC-inversion 

circuits.

3.5 Over-current capability of IGBTs

The current rating of IGBTs are specified for continuous DC currents, but in a pulsed power supply 

the IGBTs switch short current pulses with peak currents that are much higher than the rated 

average and RMS switching currents of the devices. In Chapter 2 the average and RMS currents in a 

C-C transfer loop are given by Equations 2.20 and 2.21. For most pulsed power supplies for CO2 

TEA lasers the transfer time in the switched C-C loop is of the order of a few microseconds and the 

repetition rate of the order of a few kilohertz. This results in a peak switching current / JiPeak which is 

between 1 0 0  and 1 0 0 0  times higher than the corresponding average current and between 10  and 100  

times higher than the corresponding RMS current. It is therefore uneconomical to use an IGBT with 

a continuous current rating equal or higher than the peak switched C-C transfer current. Costs can 

be greatly reduced by using an IGBT with a continuous current rating much lower than the peak 

switching current. However, the peak current through the IGBT is limited by two factors, the peak 

saturated collector current z'c{sat) and the thermal characteristics of the IGBT.

The largest limiting factor is the maximum saturated collector current. C-C transfer currents that 

would exceed the maximum saturated collector current are clamped. The IGBT is forced into the 

saturated region where the IGBT acts as a current limiter. The collector-emitter voltage will 

increase to counteract any further increase in the transfer current -  the IGBT effectively turns off. 

The high collector current and increased collector-emitter voltage will cause a very large 

instantaneous power dissipation in the IGBT, which can induce damaging thermal stresses in the 

semiconductor wafer o f the IGBT. The maximum saturated collector current can be increased by 

increasing the gate-emitter voltage as shown earlier in Figures 3-2 and 3-3, but the maximum rated 

gate-emitter voltage of the IGBT may not be exceeded. Gate-emitter voltages beyond the rated 

value may damage the gate insulation layer of the IGBT, thereby destroying the device. In general 

the limit on the collector current at maximum gate-emitter voltage is between 4 and 6  times the 

rated collector current.
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The limitation on the peak switching current due to thermal considerations is normally less severe 

and has a larger effect on the lifetime of the IGBT as discussed in Chapter 6 .

3.6 Conclusion

IGBTs can be used effectively in pulsed power applications and from a theoretical viewpoint it is 

possible to switch current pulses with peak currents several times the average rated current of the 

IGBT. However, it is important to conduct lifetime tests to verify whether a particular IGBT can 

switch these high current pulses for extended periods of time.

Both series stacking and paralleling of IGBTs are possible. Paralleling of IGBTs seems to be the 

most robust way of increasing the total switch rating. Series stacking has the advantage that higher 

voltages can be switched thereby reducing the total switching current and simplifying the pulse 

transformer design. Therefore, for this project two series-stacked IGBTs are considered. This will 

also enable the experimental verification of the reliability and voltage sharing of series connected 

IGBTs.
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Chapter 4

Characterization of a pulsed mini C 02 TEA 

laser

In order to design an optimised laser system, the laser must first be characterized before the final 

design of the pulsed power supply can be made. This includes the response of the laser to changes 

in electrical excitation pulse energy, voltage rise-time and circuit configuration [5], The aim is to 

maximize the energy transfer into the discharge of the laser and minimize the remaining energy in 

the pulse circuit. It is important to minimize the remaining energy in the pulse circuit, because it can 

lead to undesired oscillations. These oscillations in turn can damage the solid state switches used in 

the pulsed power supply. The CO2 TEA laser that was used has the following specifications:

■ 10 mm electrode spacing, 360 mm electrode length

■ 400 mm resonant cavity length

■ 0.7 to 1.1 bar gas pressure

■ gas mixtures (N2:C0 2 :He): fast 1:1:3 and standard 1:1:8 mixtures.

4.1 Test set-up

To characterize the laser, it must be possible to change the pulse energy, pulse voltage and voltage 

rise-time. In order to achieve this, a simple excitation circuit was constructed consisting of a single 

directly switched C-C transfer loop. The circuit diagram is shown in Figure 4-1.
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electrodes ^
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c , 11.04 nF (12x 920 pF)

Cp 3.68 nF to 11.04 nF (4x to 12x 920 pF)

U 0.47 nH to 2.30 |^H

Figure 4-1: Excitation test circuit to determine the electrical characteristics o f the laser.

The test circuit utilized a thyratron switch with which the high excitation voltage can be directly 

switched. To make the storage capacitor Cs, peaking capacitor Cp and transfer inductor L, 

accessible, the circuit was constructed in air and was not enclosed. The storage and peaking 

capacitor banks were constructed from 920 pF high-voltage ceramic capacitors and the transfer 

inductor consisted of an exchangeable air core inductor. The charging voltage of the storage 

capacitor could be varied between 0 kV and 30 kV. The following circuit parameters can be set:

a. Transfer time, r :

As discussed in Chapter 2, this is the time needed for the voltage over Cp to reach a 

maximum after the thyratron has switched. The transfer time of the C-C loop is given by

C C
t = x AL. s p

1 c .  +c.
(4.1)

For a given capacitance the transfer time can be adjusted by changing the inductance 

value of Lt.

b. Energy, E0 :

The energy in the circuit is determined by the initial stored energy in the storage 

capacitor Cs and can be adjusted by the charging voltage V0 and the capacitance of Cs

E  = —C F 02
2

(4.2)
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c. Relationship between Cs and Cp :

The relative sizes of Cs and Cp can be varied. The conventional approach is to choose Cs 

and Cp equal for total energy transfer from Cs to Cp (losses are neglected).

4.2 Discharge stability

The stability o f a laser discharge can be quantified by the laser’s stable operating region. The stable 

operating region is bounded by the minimum and maximum charging voltages for which stable and 

arc-free discharges are obtained. The minimum and maximum voltages are normally a function of 

gas pressures p ,  circuit configuration and repetition rate / rep. A minimum threshold voltage Vmm is 

needed to obtain a gas breakdown, which initiates the laser discharge. Voltages above the maximum 

threshold Vmax will cause arcing, because of too high energy densities within the discharge and/or 

bad matching (see Section 4.2.4).

4.2.1 Pre-ionisation and stability

In high-pressure CO2 lasers the gas medium between the electrodes has to be partially ionised 

before the laser discharge is initiated. Normally a free electron density of the order of 108/cm3 is 

needed. The ionisation of the gas prior to the laser discharge, also called pre-ionisation of the gas, is 

necessary to generate stable discharges. It is extremely difficult to obtain stable discharges without 

pre-ionisation. Pre-ionisation of the gas between the laser electrodes can be obtained by irradiating 

the gas with UV (ultra-violet) light or X-ray radiation. In the experimental CO2 laser the pre­

ionising UV light is generated by small discharges. These small discharges are generated between a 

series o f pre-ionisation spark gaps located parallel alongside the laser electrodes. The pre-ionisation 

spark gaps can electrically either be connected parallel or in series with the laser electrodes.

The two pre-ionisation configurations, parallel and series, were tested. In both circuit configurations 

(see Figures 4-2 and 4-5) the storage capacitor Cs is charged through the inductances Ldec and Lcharge- 

The inductance Idee decouples the pulse circuit from the high voltage source during the switching 

period and the charging inductances Lcharge ensure a DC path to ground during the charging phase 

of Cs.
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Parallel pre-ionisation

The laser was first operated with parallel pre-ionisation. The detailed circuit diagram is shown in 

Figure 4-2.

C s -L

HV< +
Ldec

Gate*

Lt

Cp -L

Thyratron

Lcharge

C p re -L -L c p re

Cg 11.04 nF (12x 920 pF)

cp 3.68 nF to 11.04 nF (4x-12x 920 pF)

Cpre 360 pF (2x 180 pF)

Lt 0.47 pH to 2.30 pH

Figure 4-2: Excitation circuit with parallel pre-ionisation.

The storage capacitor Cs is charged through the inductors L̂ tc and Lcharge- The decoupling 

inductor L^c decouples the pulse circuit from the high voltage supply during the switching period 

and the charging inductor ZCharge ensures a DC path to ground during the charging phase of capacitor 

Cs. The two inductances L<iec and Z-charge act as open circuits during the switching period of the pulse 

circuit.

After the thyratron switches the pre-ionisation will fire as soon as the voltage over the peaking 

capacitor Cp has reached the pre-ionisation spark gap breakdown voltage (15 ± 5 kV). The pre­

ionisation capacitors Cpre limit the energy that will pass through the pre-ionisation discharge. 

Shortly after (20 ± 1 0  ns) the pre-ionisation discharge, as the voltage over the peaking capacitor 

increases to approximately 25 kV, the main discharge is initiated. The timing diagram of the 

parallel pre-ionisation is shown in Figure 4-3.
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Figure 4-3: Timing of parallel pre-ionisation discharge.

Problems were experienced with the discharge stability (especially with 1:1:3 gas mixture), due to 

either absent or insufficient pre-ionisation discharges. Examples of measured discharge voltages for 

insufficient and sufficient pre-ionisation are shown in Figure 4-4.

Time [fxs]

Figure 4-4: Discharge voltage for insufficient and sufficient pre-ionisation.

With sufficient pre-ionisation a uniform and arc-free main discharge is obtained and the oscillation 

in the electric pulse circuit can be minimized. In the case where no pre-ionisation is initiated, also 

no main discharge is obtained. The electric energy in the pulse circuit cannot be dumped into the
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discharge. The voltage over the electrodes (discharge voltage) oscillates strongly, reaching peak 

voltages o f 35 ± 5 kV well beyond the normal breakdown voltage of 20 ± 5 kV.

The problems with parallel pre-ionisation are presumably mainly caused by the intrinsic design of 

the pre-ionisation pins of the laser, which was used for the experiments. All the pre-ionisation pins 

were connected in parallel with only small decoupling inductors added between individual pins. 

This could lead to a bigger time jitter in the pre-ionisation discharge with respect to the voltage rise 

over the laser electrodes and can cause the pre-ionisation to fire too late or not at all. In the case 

where the pre-ionisation fires too late, the voltage over the electrodes reaches higher values than the 

normal breakdown voltage and arcing can be observed in the later stages o f the discharge, which 

indicates bad matching conditions (see Section 4.2.4). This is also a clear indication o f insufficient 

generation of free electrons by the pre-ionisation. Normally an average free electron density of
9 3*-10  /cm is needed for stable, uniform discharges. A time jitter of /jitter= 50 ± 10 ns was measured 

during the experiments.

Series pre-ionisation

The detailed circuit diagram of the series pre-ionisation configuration is shown in Figure 4-5.

CsJL

H V*---------
Ldec /'"'N

G a te * Thyratron

Cs 11.04 nF(12x 920 pF)

Cp 3.68 nF to 11.04 nF (4x to 12x 920 pF)
Cpre 360 pF (2x 180 pF)

L, 0.47 p,H to 2.30

Figure 4-5: Excitation circuit with series pre-ionisation.
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The inductances Zdec and Z,Charge have the same function as with the parallel pre-ionisation 

configuration. Initially the pre-ionisation spark gap is not discharging and has a high impedance 

before the thyratron switches. There is a fast voltage rise over the pre-ionisation spark gap while the 

thyratron switches, which is equal to the voltage decrease over the thyratron. The voltage rise time 

of the spark gap is thus determined by the switching time o f the thyratron, which is in the order 

of 10 ns. After the breakdown threshold of the pre-ionisation spark gap is reached, the spark gap 

fires and current can flow through the transfer inductance Lt from Cs to Cp and a voltage rise is 

attained over the peaking capacitor Cp. The timing diagram of the series pre-ionisation 

configuration is shown in Figure 4-6.

Figure 4-6: Timing of series pre-ionisation discharge.

The voltage rise over the laser electrodes is only obtained after the pre-ionisation discharge has 

fired. This is a big advantage, because there is very little pre-ionisation jitter with respect to the 

electrode voltage rise and much more stable discharges are obtained with this configuration. For 

this case a time jitter o f fitter= 10  ± 2  ns was measured.

The biggest disadvantage of series pre-ionisation is that all the excitation energy has to pass through 

the pre-ionisation gap first. This can probably lead to increased erosion of the pre-ionisation spark 

gaps compared to parallel pre-ionisation.

4.2.2 Stable operating region and peaking capacitor size

The stable operating regions o f the parallel and series configuration were measured as a function of 

peaking capacitor size. The stable operating region is defined as the condition for which less than
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1% of the discharges are unstable (i.e. arcing). The storage capacitor was kept constant at Cs= 11.04 

nF with a transfer inductance of L, = 530 nH. A 1:1:3 gas mixture at 1 bar gas pressure was used.

From Figure 4-7 it becomes clear that the series pre-ionisation configuration has a much larger 

stable operation region than the parallel pre-ionisation. Arcing occurs if the peaking capacitor size 

is too small. As will be shown later in this chapter (see Section 4.4), for reduced peaking capacitor 

sizes the laser discharge progresses in two steps. First an initial discharge is obtained where the 

main portion of the energy stored in the peaking capacitors is transferred into the laser discharge. 

This is followed by a secondary discharge where the remaining energy on the storage capacitor is 

transferred into the laser discharge. For too small peaking capacitor sizes the stored energy on the 

peaking capacitor is too small to initiate a strong and uniform initial discharge. During the 

secondary discharge this results in bad matching conditions between the laser power supply and the 

laser discharge. Bad matching conditions ultimately lead to unstable discharges (see Section 4.2.4). 

The minimum usable peaking capacitor size is approximately 1.84 nF (2x 920 pF) for both a 1:1:3 

and 1 :1:8  gas mixture.

Number of peaking capacitors (920pF per capacitor)

Figure 4-7: Stable operating region for parallel and series pre-ionisation.

4.2.3 Voltage rise-time and stability

The voltage rise-time is directly proportional to the transfer time r  o f the C-C transfer circuit. As 

mentioned in Chapter 2 the definition for voltage rise-time in this discussion was chosen as 0.6 r
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(voltage rise from 10% to 90% of peak voltage). In order to obtain a stable and uniform discharge 

the voltage rise-time over the laser electrodes has to be fast enough. If the rise-time is too slow the 

discharge will not be uniform and arcing will occur. In general rise-times of the order of 100 ns are 

needed.

Stability measurements were taken for Cs = Cp and the voltage rise-time was changed by changing 

the size of the inductor L,. Figure 4-8 shows the stable operating region for different transfer times 

and a 1:1:8 (N2:C0 2 :He) gas mixture (Cs= Cp-  11.04 nF, series pre-ionisation).

Pressure p in [bar]

Figure 4-8: Stable operating region for different voltage rise-times (1:1:8 mixture).

There is a clear reduction in the stable operating region for a transfer time of 300 ns (rise-time 

approx. 180 ns). For the 1:1:3 (N2:C0 2:He) gas mixture there is also a reduction in the stable 

operating region for a transfer time of 300 ns, as shown in Figure 4-9.
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Pressure p  in [bar]

Figure 4-9: Stable operating region for different voltage rise-times (1:1:3 gas mixture).

The upper bound on the voltage rise-time is thus approximately 150 ns for both the 1:1:8 and 1:1:3 

gas mixtures. It was also found that for rise-times slower than 110 ns the discharges turned from 

purple to white and the laser output power dropped by approximately 10% after a few minutes of 

operation at repetition rates of 20 Hz. This indicates less tolerance to O2 build-up at slower rise- 

times due to dissociation of the CO2 gas. This can be improved by including a catalyst within the 

laser chamber.

4.2.4 M atching and stability

Besides the voltage rise-time, matching plays a big role in the stability and efficiency of the laser. 

Matching is an indication of how much energy is transferred from the electric pulse circuit into the 

laser discharge. If the circuit is badly matched only a part of the electric energy in the pulse circuit 

is transferred into the discharge. A fair amount of energy remains in the electric circuit, which 

results in unwanted oscillations and reverse overshoot voltages over the laser electrodes.

If the reverse overshoot voltage is large enough it can cause arcing in the later stages of the 

discharge, as shown by the measured voltage traces in Figure 4-10. Note, the applied voltage pulse 

is negative and the reverse overshoot voltage is positive. The grey trace shows a discharge without
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arcing and the black trace shows a discharge with arcing during the reverse overshoot. As soon as 

arcing occurs the voltage over the laser electrodes drops to zero, because o f the low impedance of 

the arc discharge. Matching cannot be easily defined and quantified for pulsed laser discharges, 

because o f the highly non-linear characteristics of the pulsed laser discharge.

Time [|is]

Figure 4-10: Arcing during reverse voltage overshoot.

For this project the best matching conditions were determined experimentally. As will be discussed 

later in this chapter (see Section 4.3), there are two approaches that can be used for the C-C transfer 

excitation circuit: Cs = Cp and Cs > Cp.

For the case where Cs = Cp matching is mainly determined by the size of the peaking capacitor and 

the charging voltage. Best stability, with the largest stable operating region for both the 1:1:3 and 

1:1:8 gas mixtures, was obtained for a peaking capacitor size o f Cp = 12 x 920 pF = 11.04 nF. The 

initial voltage rise-time also has an effect on the matching condition. Better matching with smaller 

reverse overshoot voltages was obtained with faster voltage rise-times ( r  < 100 ns). Faster 

excitation pulses result in more uniform discharges, which allow a more efficient energy transfer 

into the laser discharge.

For the approach where Cs > Cp the size of the transfer inductance L, also plays an important role in 

the matching stability. As mentioned earlier and also discussed in more detail in Section 4.4, the 

discharge for Cs > Cp progresses in two steps. An initial discharge mainly fed from the peaking
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capacitor followed by a secondary discharge mainly fed from the storage capacitor via the transfer 

inductance is obtained. The size of the transfer inductance thereby has a large influence on the 

energy transfer during the secondary discharge. The reduction of the peaking capacitor size will 

clearly result in shorter C-C transfer times and thus faster excitation voltage rise-times (see 

Equation 4.1). In the previous section it was found that voltage rise-times of up to 150 ns will result 

in stable discharges for the case where Cs = Cp. It can therefore be argued that for sufficiently fast 

voltage rise-times (< 150 ns) the transfer inductance can be increased for a reduction in the peaking 

capacitor size. However, it was found that an increase in transfer inductance for a corresponding 

decrease in peaking capacitor size greatly reduced the matching conditions during the secondary 

discharge. Insufficient energy transfer during the secondary discharge from the storage capacitor 

into the laser discharge was obtained. This resulted in reverse overshoot voltages and unstable 

discharges. Hence, faster initial excitation pulses are needed for the case where Cs < Cp in order to 

obtain more uniform initial discharges. More uniform initial discharges reduce the risk of arc- 

formation during the secondary discharges and improve the matching conditions.

Measured stable operating regions for reduced peaking capacitor sizes (Cs =  12 x 920 pF) and for 

two transfer inductances are shown in Figure 4-11.

Number of peaking capacitors (920pF per capacitor)

Figure 4-11: Stable operating region as a function of the peaking capacitor size for two transfer 
inductances. (1:1:3 gas mixture)
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There is a clear reduction in the stable operating region for the increased transfer inductance, 

Lt = 1500 nH. The smaller transfer inductance, Lt = 920 nH, results in a transfer time of r  = 250 ns 

for Cs = Cp. This transfer time was also found to yield a good stable operating region in 

Section 4.2.3 for Cs = Cp. The measurements thus illustrate that an increase in transfer inductance 

reduces the stable operating region. Best stability for all peaking capacitor sizes is obtained by using 

the same inductance that also yields good stability for the case where Cs = Cp. Consequently, with 

the reduction of the peaking capacitor size faster voltage rise-times are unavoidable.

4.3 Output energy and efficiency

The optical output energy was measured with a Gentec ED-500 pyro-electric energy meter. 

Measurements were performed for different circuit values by changing the peaking capacitor and 

inductor sizes. This was done in order to optimise the laser output energy and efficiency. Energy 

measurements were also taken for different gas mixtures to compare the effect o f the circuit 

configuration on the output energy for different gas mixtures. The type of pre-ionisation - series or 

parallel - does not seem to have an influence on the output energy of the laser.

The efficiency 77 o f the laser is calculated with respect to the initial stored electric energy in the 

storage capacitor Cs:

F  2  F^ o u tp u t ^ o u tp u t //^  ^»\

n = ~ = ~ c v r ' (  }stored ^  s 0

with Output the optical output energy and Vo the charging voltage. The calculated efficiency is close 

to the “wall plug”-efficiency of the laser, because the efficiency o f the high-voltage source is very 

good (typically >90%) and losses during the charging period o f Cs are also comparatively low.

4.3.1 Peaking capacitor size and excitation approaches

Two approaches were investigated in the excitation of the laser:

Cs -C p .  This is the conventional approach if losses are ignored [40]. Ideally all the energy is 

transferred from the storage capacitor Cs to the peaking capacitor Cp after the thyratron
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switches. As the voltage over the peaking capacitor reaches a maximum the laser discharge 

is initiated and almost all the energy is transferred from the peaking capacitor into the 

discharge. The time during which energy is transferred into the discharge is in the region of 

10 ns to 50 ns, depending on the internal inductance of the laser head between the laser 

electrodes and peaking capacitor.

Cs>Cp. The second approach is to reduce the peaking capacitor size. As the thyratron switches a 

partial energy transfer occurs from Cs to Cp and a fast voltage rise is obtained over the 

peaking capacitor. The maximum voltage obtainable over the laser electrodes is up to twice 

the charging voltage, Vo (see Equation 2.10). In this case the peaking capacitor is used to 

initiate the laser discharge. After the discharge is initiated the remaining energy is 

transferred from Cs through L, into the discharge. This causes the electrical excitation pulse 

to be stretched (see Section 4.4). The energy transfers into the discharge occurs over a 

period of between 100 ns and 200 ns [5][9]

The voltage and current traces for the two configurations are shown in Section 4.4, which gives 

more insight into the differences between the two configurations.

4.3.2 Output energy and efficiency for Cs = Cp

The optical output energy was firstly measured for the conventional approach as a function of the 

inductance, Lt, which determines the transfer time of the C-C circuit, as given by Equation 4.1. The 

capacitor size is Cs = Cp -  11.04 nF and the gas pressure is kept at p  = 1 bar. Two different gas 

mixtures, a fast 1:1:3 and a standard 1:1:8 gas mixtures, have been investigated.

1:1:8 (N2:CC>2:He) gas mixture

Two-dimensional and three-dimensional plots of the measured output energy as a function of the 

charging voltage V0 and the inductance L, are shown in Figures 4-12 and 4-13. As expected, the 

optical output energy increases with increasing charging voltage, because the electric pulse energy 

is increased (see Equation 4.2). Note that the output energy depends slightly on the inductance Lh 

with a variation of approximately 2 0 % in the output energy over the measured inductance range. 

This is also seen in the plots of the laser efficiency as a function o f charging voltage and inductance, 

shown in Figure 4-14 and 4-15.
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Figure 4-12: Optical output energy vs. inductance L, for three charging voltages V0. (1:1:8 mixture)

Inductance [nH] o 20 Charging voltage [kV]

Figure 4-13: Optical output energy vs. charging voltage Vo and inductance L,. (1:1:8 mixture)
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5.00

Inductance [nH]

Figure 4-14: Efficiency vs. inductance L, for three charging voltages Vo. (1:1:8 mixture)

Inductance [nH] °  20 Charging voltage [kV]

Figure 4-15: Efficiency vs. charging voltage V0 and inductance L,. (1:1:8 mixture)

There is also a slight dependence of the efficiency on the charging voltage, with a variation of 

approximately 10% in the output energy and efficiency over the measured voltage range. The best 

efficiency of approximately 4% is obtained with an transfer inductance of between 1.0 |iH and
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2.0 |iH for charging voltages between 20 kV and 22 kV. The influence o f  the inductance on the 

output energy is more prominent for lower voltages (below 24 kV) with the best efficiency at a 

transfer inductance o f  approximately 1.5 |lH. The maxima in the efficiency are most probably 

caused by a trade-off between the switching losses in the thyratron and matching between the 

electric excitation circuit and the laser discharge. For smaller inductances, faster transfer times are 

obtained, which implies a faster current rise during the switching period o f  the thyratron. This 

increases the switching losses in the thyratron during switching. For bigger transfer inductances the 

reverse overshoot voltages (see Section 4.2.4) increased. This indicates a deterioration o f  the 

matching o f  the laser for bigger transfer inductances, i.e. less energy is transferred from the electric 

excitation circuit into the laser discharge.

1:1:3 (N2:C 0 2:He) gas mixture

Three-dimensional plots o f  the output energy and efficiency for a 1:1:3 gas mixture are also shown 

in Figures 4-16 and 4-17. The output energy for the 1:1:3 gas mixture is approximately 20% higher 

than for the 1:1:8 gas mixture. The output energy and efficiency show a similar dependence on the 

transfer inductance L, and charging voltage. The best efficiency is obtained with a transfer 

inductance o f  approximately 1.5 |j.H and a charging voltage between 24 kV and 26 kV.

190 

180 

170 

160 

150 

140 

130 

120 

110 

100
Inductance [nH] 500 20 Charging voltage [kV]

Figure 4-16: Optical output energy vs. charging voltage V0 and inductance/,,. (1:1:3 mixture)
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Inductance [nH] 500 20 Charging voltage [kV]

Figure 4-17: Efficiency vs. charging voltage V0 and inductance L,. (1:1:3 gas)

4.3.3 O utput energy and efficiency for Cs > Cp

In order to determine the influence o f  the peaking capacitor size on the laser output, the inductance 

L, and storage capacitor Cs are kept constant (Cs = 11.04 nF, L ,=  920 nH) and the peaking capacitor 

size is decreased. The gas pressure is kept at p  = 1 bar. Although for Cs = Cp the best efficiency is 

obtained at L, = 1500 nH, it was found that L, =  920 nH yields better discharge stability for both 

Cs = Cp and Cs > Cp (see Sections 4.2.3 and 4.2.4).

1 :1 :8  (N2:CC>2:He) gas mixture

Three-dimensional graphs o f  the optical output energy and efficiency o f  the laser as a function o f  

the charging voltage and peaking capacitor size are shown in Figures 4-18 and 4-19. There is a clear 

increase in optical output energy as the peaking capacitor size is reduced below 8 nF 

(approx. 0.7Cs). The peaking capacitor size can only be decreased down to 3.68 nF, because for 

smaller values the discharge becomes unstable (see Section 4.2.2).
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Figure 4-18: Optical output energy vs. charging voltage and peaking capacitor size. (1:1:8 mixture)
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Figure 4-19: Efficiency vs. charging voltage and peaking capacitor size. (1:1:8 mixture)
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There is an increase o f  approximately 35% in the laser output energy and efficiency as the peaking 

capacitor size is reduced from Cp = C, = 11.04 nF to Cp = '/3Cs = 3.68 nF. The best efficiency that 

can be obtained is 5.3%, which is a very good result for a mini TEA CO2 laser. The increase in 

efficiency is independent o f  the charging voltage. In order to better understand this effect, the 

voltage and current waveforms o f  the excitation circuit have to be analysed (see Section 4.4).

1:1:3 (N2:C 0 2:He) gas mixture

The same dependence o f  the output energy and efficiency on the peaking capacitor size was 

measured for the 1:1:3 gas mixture, shown in Figures 4-20 and 4-21. There is an increase o f  

approximately 25% as the peaking capacitor size is reduced with the best efficiency o f  5.8% and 

output energy o f  240 mJ.

220 
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100

Capacitance [nF] 12 20 Charging voltage [kV]

Figure 4-20: Optical output energy vs. charging voltage and peaking capacitor size. (1:1:3 mixture)
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Figure 4-21: Efficiency vs. charging voltage and peaking capacitor size. (1:1:3 mixture).

4.3.4 O utput energy and efficiency for com m ercial thyratron based pulsed  

power supply

The output energy and efficiency of the CO2 laser obtained with a commercial thyratron driven 

pulsed power supply were also measured. The commercial pulser was supplied with the CO2 TEA 

laser and was originally used to excite the laser. The pulser consists of a thyratron switched LC- 

inversion topology with a single MPC stage. The total initial storage capacitance of the commercial 

supply is Cs = 11.04 nF. This is equal to the storage capacitance of the experimental excitation 

circuit used in the previous sections (Sections 4.3.2 and 4.3.3). For equal initial charging voltages 

the commercial and experimental laser power supplies therefore have the same initial stored energy. 

Three-dimensional graphs of the output energy and efficiency as a function of the laser gas pressure 

and charging voltage are shown in Figures 4-22 to 4-25. Figures 4-22 and 4-23 are for a 1:1:8 

(N2 :CC>2 :He) gas mixture and Figures 4-24 and 4-25 are for a 1:1:3 (N2 :C02 :He) gas mixture.
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Figure 4-22: Optical output energy vs. charging voltage and gas pressure for commercial thyratron 
based pulsed power supply. ( 1 :1 : 8  mixture)
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Figure 4-23: Efficiency vs. charging voltage and gas pressure for commercial 
pulsed power supply. ( 1 :1 : 8  mixture)
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Figure 4-24: Optical output energy vs. charging voltage and gas pressure for commercial thyratron 
based pulsed power supply. (1:1:3 mixture)
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Figure 4-25: Efficiency vs. charging voltage and gas pressure for commercial thyratron based 
pulsed power supply. (1:1:3 mixture)
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The peak optical output energy and efficiency of the commercial pulser for a 1:1:8 gas mixture is 

approximately 95 mJ and 1.9%, respectively (see Figure 4-22 and 4-23). For a 1:1:3 gas mixture a 

peak optical output energy and efficiency of approximately 160 mJ and 3.3% was obtained, 

respectively (see Figure 4-24 and 4-25). For both gas mixtures the peak output energy and 

efficiency is clearly less than results obtained with the optimised experimental excitation circuit 

with reduced peaking capacitor size (see Section 4.3.3).

For a direct comparison of the optimised experimental test circuit (Cp = V3 Cs and L, = 920 nH) and 

the commercial pulser the optical output energy and efficiency of the two pulsers are shown in 

Figures 4-26 and 4-27. The output energy and efficiency are plotted as a function of the charging 

voltage for a laser gas pressure of 1 bar. There is a significant improvement of the optical output 

energy and efficiency of the laser for the optimised pulser as used in Section 4.3.3. For both gas 

mixtures (1:1:8 and 1:1:3) the output energy and efficiency are more or less doubled over the whole 

charging voltage range.

Charging voltage [kV]

Figure 4-26: Comparison of optical output energy of commercial and optimised experimental 
pulsers.
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Charging voltage [kV]

Figure 4-27: Comparison of efficiency of commercial and optimised experimental pulsers.

4.4 Voltage and current waveforms

The circuit voltages were measured with a Tektronix P6015A high-voltage probe (xlOOO, 70 MHz 

bandwidth). All voltages have to be measured with respect to a common ground point and the 

circuit voltages are indicated in Figure 4-28.

Lt

+ +
Cs.

th
Thyratron

“
+

i i
i

P " c p  c

c
V
P

1 disch

Figure 4-28: Diagram to indicate measured voltages and currents.

The voltage over the peaking capacitor vp and the thyratron v,/, can be measured directly. The 

voltage over the storage capacitor vs can be calculated by measuring voltage vi and subtracting the 

thyratron voltage:
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(4.3)

The currents could not be measured directly, because no appropriate current probe was available at 

the time of measurement. An indirect approach had to be used. The currents can be calculated from 

the measured voltages by differentiating the voltage over the capacitors Cs and Cp and/or integrating 

the voltage over the inductance Lt. It is not possible to determine the exact value of Lh because of 

other series parasitic inductances. Thus, the voltages over the capacitors are used to determine the 

currents:

Note that these calculations are only valid if the capacitor values are constant with time and voltage, 

i.e. the capacitors do not change their properties during the discharge period. High-quality ceramic 

capacitors were used, which are relatively stable with a maximum change in capacitance 

of 20% over a voltage range of 40 kV. The change in capacitance is caused by the piezo-electric 

effect. The error introduced by this capacitance change can be approximated by the following 

expression:

with V the average voltage over the capacitor and dC/dt the average change in capacitance over the 

discharge or charging period. For an average voltage of 20 kV, an average capacitance change 

of 20% over a 150 ns discharge period and a capacitance o f 10 nF, the error is approximately

The energy transfer, -fidisch, into the laser discharge can be calculated from the discharge voltage and 

current, by integrating over the instantaneous power deposited in the laser discharge:

(4.4)

(4.5)

and disch ^s Ip ' (4.6)

dt ’
(4.5)

AI = 200 A.

(4.6)

89

Stellenbosch University http://scholar.sun.ac.za/



The discharge voltage VdiSCh was measured very close to the laser electrodes to reduce the effect of 

the inductance of the laser head between the peaking capacitor and laser electrodes. The voltage and 

current waveforms were measured for Cp = C, and Cp = V3 Cs. A transfer inductance of L, = 920 nH, 

a storage capacitance of Cs = 11.04 nF and a charging voltage of 25 kV were used. The voltage over 

the discharge, the discharge current and the inductor current are discussed in the following section.

4.4.1 Comparison of discharge voltages

The discharge voltage is displayed in Figure 4-29 for the two cases Cs = Cp and Cs > Cp.

-50 0 50 100 150 200 250 300 350 400 450 500

Time [ns]

Figure 4-29: Comparison o f discharge voltages for Cs = Cp and Cs > Cp.

C  -  Cr : There is a single voltage pulse, which is caused by an almost total energy transfer from Cs 

to Cp. At t = 180 ns the discharge is initiated and energy is deposited from the peaking capacitor 

into the discharge between t = 200 ns and 280 ns. The voltage drops to almost zero, which indicates 

good matching.

C  > Cc : There is an initial fast voltage pulse between t = 0 ns and 200 ns, which is caused by a 

partial energy transfer from Cs to Cp. The voltage pulse has a faster rise-time than for Cs = Cp, 

because of the smaller peaking capacitor size (see Equation 4.1). This results in an increase in the 

breakdown voltage and at t -  1 2 0  ns the discharge is initiated and energy is transferred from the 

peaking capacitor into the discharge. Between t = 200 ns and 400 ns there is a second smaller 

voltage pulse. This is caused by the remaining energy in the storage capacitor being deposited into
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the discharge directly through inductor Lt. The electric excitation pulse is clearly stretched by 

approximately 200 ns in comparison to the case where Cs = Cp.

4.4.2 Comparison of current waveforms

The above discussion makes more sense when looking at the current waveforms shown in 

Figures 4-30 and 4-31.

Time [ns]

Figure 4-30: Comparison of inductor currents for Cs = Cp and Cs > Cp.

Time [ns]

Figure 4-31: Comparison of discharge currents for Cs = Cp and Cs > Cp.
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C  = Cp : There is only a single discharge current pulse (Figure 4-31), which is obtained between 

t = 200 ns and 300 ns, soon after the discharge is initiated. The discharge pulse is preceded by a 

C-C transfer pulse in the inductor current (Figure 4-30), which charges the peaking capacitor 

between t -  0 ns and 200 ns. The length of the discharge current pulse is determined by the internal 

inductance o f the laser, between the peaking capacitor and the laser electrodes. Simulations, which 

are outside the scope of this discussion, show that the discharge current pulse is longer for bigger 

internal inductances. The length of the discharge pulse is approximately 100 ns.

Cc > CP : Similar to the behaviour of the voltage pulse there is an initial discharge current pulse 

between t = 100 ns and 200 ns, followed by a smaller second pulse between t = 200 ns and 400 ns. 

The initial discharge current pulse is obtained during the C-C transfer pulse in the inductor current. 

A small second pulse can be observed in the inductor current between t = 250 ns and 350 ns, which 

overlaps with the second discharge pulse. This shows that the second discharge current pulse is 

obtained by a direct energy transfer from the storage capacitor into the laser discharge. The total 

length of the discharge pulse is approximately 300 ns.

4.4.3 Comparison of discharge energies

To complete the circuit analysis the energy transfer into the discharge was calculated and is shown 

in Figure 4-32.

Time [ns]

Figure 4-32: Comparison of energy transfers into discharge for Cs = Cp and Cs > Cp.

92

Stellenbosch University http://scholar.sun.ac.za/



C  = Cc : As expected there is only energy transfer during the discharge current pulse between 

t = 200 ns and 250 ns. The energy is thus deposited within a time interval o f 50 ns.

C  >Cf : There is an initial energy transfer during the first voltage and discharge current pulse 

between t = 100 ns and 150 ns. An additional energy transfer occurs during the second smaller 

voltage and current discharge pulse between t = 200 ns and 350 ns. The energy is transferred within 

a time interval o f 250 ns. This results in 10% to 20% more energy transfer than for Cs = Cp.

4.4.4 Comparison of optical pulse shapes

The optical pulse is obtained approximately 500 ns after the excitation pulse. The two capacitor 

configurations therefore only have a limited influence on the optical pulse shape. The optical pulse 

shapes were measured with a fast pyro-electric detector (Eltec 420, rise-time 2 ns into 50 Q). The 

measured optical pulse shapes for Cs = Cp and Cp = XI$CS are depicted in Figure 4-33. The initial 

intensity spike is the same for the two capacitor configurations. The second gain switched intensity 

spike and the tail region is stronger for the case where Cs > Cp. This is caused by more efficient 

energy transfer into the laser discharge as discussed in the preceding sections. Note that the optical 

pulses are up to 2.5 fas long, which is much longer than the electrical excitation pulses. Thus, it 

becomes clear that the length of the electrical excitation pulses must also be in the order of a few 

microseconds in order to obtain stretching of the optical pulse through electrical excitation.

Time [us]

Figure 4-33: Optical pulse shape for Cs = Cp and Cs > Cp.
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4.5 Summary
Stability • Best stability is obtained with series pre-ionisation, but probably with 

increased spark gap erosion. Thus, parallel pre-ionisation should rather be 

used if possible.

• The peaking capacitor must be greater than XI->,CS to obtain stable discharges.

• Stable discharges can be obtained with voltage rise-times of approximately 

180 ns (300 ns transfer time)

• Discharges are less tolerant to O2 formation due to dissociation of CO2 for 

rise-times slower than 120 ns (200 ns transfer time). This leads to discharge 

instability and power loss. It is therefore advisable to use voltage rise-times 

between 1 0 0  and 1 2 0  ns (transfer times between 160 and 2 0 0  ns)

• Matching (i.e. transfer efficiency into the laser discharge) is an important 

consideration with improved matching for faster voltage rise-times 

(< 150 ns). For Cp < Cs even faster voltage rise-times (< 100 ns) are needed.

Inductance L, •  There is a maximum in the output energy at approximately 1.5 pH for 1:1:8 

and 1:1:3 gas mixtures and Cs = Cp. However, better discharge stability is 

obtained for transfer inductances smaller than 1 pH.

Capacitance Cp • The output energy and efficiency increases by between 25% and 35% for 

both 1:1:8 and 1:1:3 gas mixtures by decreasing the peaking capacitor size to 

Cp = XliCs. Good discharge stability is obtained for a transfer inductance of 

approximately 1.0 pH.

Waveforms • For Cp = xliCs\ Measurements of current and voltage waveforms indicate an 

initial energy transfer from the peaking capacitor into the laser discharge 

followed by an additional energy transfer directly from the storage capacitor.

• For Cp = Cs: Energy is mainly transferred from the peaking capacitor into the 

laser discharge.

• Electric pulses are stretched for Cp > Cs.

Optical pulse • Although the time interval o f energy transfer into the discharge is stretched 

from approximately 50 ns (Cp = Cs) to 250 ns (Cp= ‘/3 Cs), it does not affect 

the optical pulse shape dramatically, but only increases the output energy and 

efficiency of the laser.

Table 4-1: Summary o f electrical measurement results.
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Chapter 5

Laser pulsed power supply design and 

construction

In the previous chapters a mini CO2 TEA laser was characterized and optimum excitation 

conditions were established. Different pulse power supply topologies were considered and the 

IGBT characteristics were analysed. The next step is to finally design the pulse power supply, 

which will generate the needed fast rising high voltage pulses for efficient and stable excitation of 

the CO2 laser. The design parameters for the pulse power supply are summarized in Table 5-1. The 

parameters were mainly determined during the characterization of the CO 2  TEA laser (see 

Table 4-1) for which the power supply is being developed.

Output pulse energy 4 to 5 J

Maximum repetition rate 600 Hz

Maximum average power output 2.4 to 3.0 kW

Output voltage rise-time (10-90%), Cs = Cp 1 2 0  ns

Output Voltage at maximum energy 28 kV

Table 5-1: Design specifications of the pulsed power supply.

In the remainder of this chapter the design process is outlined, followed by a more detailed 

discussion on the design and construction o f the pulse power supply.
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5.1 Pulsed power supply design

5.1.1 Design outline

The design of a pulsed power supply is an iterative process [10]. The aim is to determine the circuit 

parameters of the pulse power supply (e.g. capacitor and inductor values of C-C transfer loops, core 

parameters of saturable inductors for the MPC unit, etc.) that will result in the specified output pulse 

characteristics. At the same time the switching currents and voltages may not exceed the peak 

ratings of the primary switching device. The design steps that were used for this project are outlined 

in the flow chart shown in Figure 5-1.

Figure 5-1: Flow chart of a laser pulsed power supply design procedure.
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Step 1 Determine supply output characteristics

The supply output characteristics include the output pulse voltage rise-time and magnitude. 

Additional parameters that are important are the pulse energy and repetition rate. The optimum 

output parameters are determined by the laser characteristics as discussed in Chapter 4.

Step 2 Choose topology

The topology of the primary switching unit (e.g. switched C-C transfer loop, LC-inversion, 

etc.) and the MPC unit (e.g. series MPC circuit, parallel MPC circuit, etc.) have to be chosen. 

Details about different topologies are given in Chapter 2.

Step 3 Select IGBT

Using the analysis and guidelines given in Chapter 3 an IGBT can be selected.

Step 4 Determine transfer time of primary switching unit

From the IGBT ratings and output specifications the minimum transfer time of the switched 

C-C transfer loop in the primary switching unit can be estimated. The transfer time of the 

C-C loop must be such that the peak current of the IGBT is not exceeded (see sections on 

switching currents in Chapter 2) and the IGBT is sufficiently decoupled during the tum-on 

transient as discussed in Chapter 3. It is also important to estimate the junction temperature of 

the IGBT under the proposed conditions.

Step 5 Determine total compression ratio of MPC unit

From the estimated transfer time in step 4 and specified output pulse voltage rise-time the total 

compression ratio, G, of the MPC unit can be calculated.

Step 6 Select MPC core type and dimension

The core type and dimensions have to be chosen. Step 6  and 7 are often performed in parallel, 

because the core size is influenced by the number of chosen MPC stages and vice versa. 

Normally only a limited range of core types and dimensions are available making the choice 

less difficult. Important considerations are costs, availability and size.

Step 7 Determine number of MPC stages

It is not possible to give exact guidelines on choosing the optimum number of MPC stages. In 

Chapter 2 it was shown how the core volume of the MPC unit can be minimized, but this often 

results in a large number of MPC stages and is not feasible. It is advisable to take all possible
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factors into account, including core volume, number of capacitor banks, number of needed 

MPC cores, costs and size. The needed core volume per MPC stage can be estimated by using 

Equation 2.32 or 2.33. The number of cores for each MPC stage can then be determined.

Step 8 Design primary switching and MPC units

A spreadsheet-aided design proposed by Swart et al. [40] can be used as a very efficient design 

tool. The results obtained from the discussion of the primary switching unit and MPC unit in 

Chapter 2 can be condensed into a spreadsheet containing the necessary formulas. The 

spreadsheet will accept a few input parameters (e.g. the output pulse voltage and rise-time, core 

dimensions of the saturable inductors, etc), which were determined in the previous design steps. 

The circuit values of the MPC and primary switching units, including circuit currents and 

voltages are automatically calculated.

Step 9 Determine turns ratio of pulse transformer

From the voltages calculated in step 8  and the IGBT voltage rating the transformer turns ratio 

o f the pulse transformer can be determined.

Step 10 Determine exact IGBT current

Using the results obtained in steps 8  and 9 the exact IGBT peak switching current can be 

calculated. If the calculated peak IGBT current exceeds the peak allowable IGBT current, steps 

7 to 9 have to be repeated or a different IGBT has to be chosen.

The spreadsheet aided design of the MPC and primary switching units can greatly simplify and 

accelerate the above design process. The design can therefore be easily changed until a design is 

obtained that satisfies both the pulse output specifications and peak IGBT ratings.

5.1.2 Design results

It is not possible to describe and retrace the iterative design process in detail and therefore mainly 

the design results are presented. Important design steps (e.g. IGBT selection, choice o f topology, 

etc) are explained in more detail in order to clarify the design process.
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Pulse power supply topology and layout

Following the discussion in Chapter 2 the basic topology for the primary switching and MPC units 

was chosen:

■ The primary switching unit is a directly switched C-C transfer loop and makes use of two 

series-stacked IGBTs and a pulse transformer to step-up the voltage.

■ The MPC unit consists of a two-stage series MPC circuit.

■ Parallel pre-ionisation is applied.

from
charging
supply

"r C3 C02 TEA laser

— \y— 
LoopO

\ /
Loopl

~ ^ ----
Loop2

Primary switching unit 2-stage MPC unit

Figure 5-2: Proposed topology for the pulse power supply.

The basic power supply layout is shown in Figure 5-2. Two series-stacked IGBTs are used as the 

primary switching device in order to be able to switch higher voltages. This will result in lower 

switching currents. Additionally the response and viability of series-stacked IGBTs in a pulsed 

power supply can be investigated. The choice of a 2-stage pulse compressor is explained in 

Section 5.1.2. The reason for choosing parallel pre-ionisation, although the discharge stability is 

less compared to series pre-ionisation, is to reduce the erosion of the pre-ionisation spark gap.

IGBT selection

After taking all the factors (e.g. switching speed, current and voltage ratings, costs, availability, 

delivery times, etc.) into account the SKM300GB174D from Semikron was selected. The 

SKM300GB174D is an IGBT module, housing two series-connected IGBTs with a 300 A average 

current rating and a peak voltage rating of 1700 V per IGBT. The IGBT module can therefore
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switch a maximum voltage of 3400 V. The data sheets of the device are given in Appendix C. 

Furthermore, it was found that the peak switching current should not exceed 5 times the rated 

current. For larger currents the IGBT saturates and effectively turns off. The IGBT should have a 

40% voltage safety margin [17] to allow reliable turn-off of the IGBT as discussed in Chapter 6 . 

The ratings of the IGBT module are summarized in Table 5-2.

IGBT Module SKM300GB174D (Semikron)

Breakdown voltage, Vceo 3400 V

Voltage safety margin 40%

Max. switching (charging) voltage, Vo 2430 V

Peak switching current 1500 A (5x rated)

Gate-collector (Miller) capacitance, Cgc 2.6 nF

Gate-emitter capacitance, Gge 14 nF

Table 5-2: Ratings of IGBT module used in primary switching unit.

Minimum transfer time of primary switching unit

Firstly, the minimum transfer time of the switched C-C loop is determined, which will result in a 

peak switching current not exceeding the peak rated current of the IGBT. Using the ratings 

specified in Table 5-2 and Equation 2.17 the minimum transfer time of the switched C-C transfer 

loop can be calculated. A minimum transfer time of r s  4 (is for pulse energies between 4 and 5 J is 

obtained. Secondly, it is verified whether the calculated minimum transfer time will also result in 

sufficient decoupling of the IGBT during the tum-on transient. Using the decoupling criteria given 

by Equation 3.21 (a = 25 A/V, Rg = 2 Q, Vg = 18 V, Vn = 5.5 V) it is found that the transfer time 

should be larger than 0.42 (as for sufficient decoupling and a transfer time of 4 (as is therefore 

acceptable.

It is also important to consider the IGBT junction temperature under the pulse conditions estimated 

in the previous paragraph. Using the datasheets in Appendix C and applying Equations 3.22 

and 3.23 the pulse and average power dissipation in the IGBT can be calculated:

P ig b t,p u lse  s  7000 W (7s>peak =  1500 A, Von =  1.5 V, r CE  =  0.0065 Q )  

and Pigbt = 16.8 W (frep = 600 Hz, r =  4 (as, D = / repr =  0.0024).

Therefore, the estimated average and peak junction-to-case temperature difference as calculated
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using Equations 3.24 and 3.25 is:

A 7/'c,peak *  10 °C (Zthjc *  0.001 K/W) 

and A7}c,peak *  1 °C (Rthjc = 0.07 K/W).

Needless to say the peak and average temperature differences are very small. As long as the case of 

the IGBT is connected to a heatsink, which is able to cool away the average power dissipation 

of 16.8 W, there should be no problem.

Number of MPC stages

As determined in the previous section the transfer time of the primary switching unit is 

approximately 4 fis. The output voltage rise-time of the pulsed power supply is 120 ns, as specified 

in Table 5-1. This is equivalent to a transfer time of 200 ns in the final MPC stage. The total 

required compression ratio of the MPC is therefore approximately G = 25. Theoretically the number 

of stages that will minimize the volume of magnetic material in the MPC unit is given by 

Equation 2.35. For a minimum core volume 6  to 7 stages are needed. Although this relatively large 

number of stages will minimize the core volume (see Chapter 2) it is not practical. For a 7-stage 

MPC unit 8  high-voltage capacitor banks will be needed, which is excessively costly. Furthermore, 

the core sizes needed for the 7-stage MPC unit are not easily available. Taking costs of magnetic 

cores and high-voltage capacitors into account a 2-stage MPC is chosen.

MPC core selection and estimated core volume

The saturable cores available for the MPC unit are of the type Finemet FT-1H from Hitachi. The 

cores have a toroidal geometry and the core parameters are listed in Table 5-3.

Type Finemet FT-1H

Saturated flux density, Bsat 1.265 T

Saturated permeability, / 4 at juq - 47il0 ' 7

Inner core diameter, r, 0.085 m

Outer core diameter, rD 0.140 m

Core height, h 0 . 0 1 0  m

Core volume, Vol 97.2 cm2

Table 5-3: Core parameters and dimensions o f MPC unit.
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Using the core dimensions given in Table 5-3 and applying Equation 2.32 or 2.33, an estimate of 

the core volume per stage can be made. For a compression ratio of approximately g„ = 5 per MPC 

stage, the estimated core volume per stage is 135 cm2 (core packing factor o f p  -  0.8, winding 

clearance of Ar = 0.005 m and a transfer energy of Eo = 5 J are assumed). The total estimated core 

volume of the 2-stage MPC unit is 270 cm2. Thus, three of the above specified cores are needed for 

the construction of the MPC unit. A larger voltage hold-off is needed in the first compression stage. 

Consequently, two cores are used in the first MPC stage to reduce the number of inductor turns due 

to practical reasons (clearance between turns of the inductor winding, etc.). A single core is used in 

the last MPC stage.

Spreadsheet based design results

As mentioned earlier, a spreadsheet-aided design is used to calculate the circuit values, currents and 

voltages of the pulsed power supply. The design normally starts with the final output MPC stage of 

the pulse power supply for which the output voltage and rise-time are clearly specified. 

Subsequently starting from the output stage, each of the connected input stages are designed 

successively up to the initial C-C transfer stage of the primary switching unit [40]. The final results 

of the spreadsheet-aided design of the MPC and primary switching units are summarized in 

Table 5-4.

The input parameters in Table 5-4 are indicated by grey-shaded cells. The columns labelled 

‘Loop2’, ‘Loopl’ and LoopO correspond to the second (final) MPC stage, first MPC stage and 

primary switching loop, respectively, as indicated in Figure 5-2. In the spreadsheet-aided design the 

C-C transfer loops of both the MPC unit and the primary switching units are optimised using the 

optimisation method B (see Section 2.2.2).

Some of the input parameters -  the parasitic stray inductance, core packing factor and transfer loss 

factor -  can only be determined after the construction details o f the pulse power supply have been 

finalised. The parasitic stray inductances Lpar of the MPC stages and the core packing factor p  of the 

saturable inductors are determined by the final construction details of the MPC unit and are 

discussed in more detail in Section 5.4. The transfer losses, including conduction and inductor core 

losses, are difficult to predict, but in general losses can be estimated to be more or less 5  % o f the 

transferred energy per C-C transfer stage.
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Circuit param eters______________________________________Loop2___________ Loopl___________ LoopO

Output energy E o J 4.20 4.42 4.65
T ransfer time Tn S 180.0E-9 706.4E-9 4.3E-6
Output voltage Vo V 27000 28421 29917
Losses n % 5.00 5.00 5.00
Loss factor, e"r' f  loss 950.00E-3 950.00E-3 950.00E-3
Damping factor a 1/s 284.96E+3 72.61E+3 11.94E+3
T ransform er ratio a 1 1 13
Input energy Ei J 4.42 4.65 4.90
Input voltage Vi V 28421 29917 2422
Output capacitance Cn F 11.5E-9 10.9E-9 10.4E-9
Input capacitance C n -1 F 10.9E-9 10.4E-9 1.67E-6
Total loop inductance Ln H 584.80E-9 9.48E-6 2.18E-6
Parasitic stray inductance L par H 20.00E-9 20.00E-9
Saturated inductance L sat H 564.80E-9 9.46E-6
H old-off time r  n.hold s 604.98E-9 3.68E-6
Switching parameters
Voltage switching ratio k  sw 0.95 0.95
Relative switching time r n . h o ld /T „ . l 0.856 0.856
Timing factor Ft 737.61E-3 737.61E-3
Saturated flux content ®  sat Vs 7.40E-3 47.39E-3
C om pression ratio C 3.92 6.08
Core parameters (toroidal)
Core m aterial F IN EM ET FIN E M E T A ir core
N um ber o f cores 1 2
Saturation flux density B sat T 1.26 1.26
Saturated permeability M-sat 1 j

Max. flux density change A B T 2.53 2.53
Core packing factor r 0.92 0.92
Inner core radius r t m 0.0425 0.0425
O uter core radius r  o m 0.0700 0.0700
Core height h m 0.0100 0.0100
Inter-core clearance A co re m 0.0030 0.0030

Core x-section A core
2m 212E-6 424E-6

M agnetic x-section A mag
2m 206E-6 413E-6

M agnetic volume V maq
3m 97E-6 194E-6

Radial winding clearance A  radial m 0.0040 0.0040
V ertical winding clearance A vert m 0.0040 0.0040
Turns N 15 48
Extra data
P eak  current I  peak A 2715 692 1405
Voltage rise-time (10% -90% ) t rise, 10-90 sec 108.0E-9 423.8E-9 2.6E-6
Maximum voltage rise time V rise kV/(is 235.6 63.2 10.9

Table 5-4: Spreadsheet-aided design results for the MPC and primary switching units.
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The design results are satisfactory, with an output voltage rise-time of 108 ns, which is even faster 

than specified, and an output pulse energy of 4.2 J. The switching voltage is within the specified 

rating (see Table 5-2). The peak switching current is marginally larger than the specified peak IGBT 

current and is also acceptable. Note, the calculated transfer inductance of the primary switching unit 

(LoopO) given in Table 5-4 is the primary equivalent transfer inductance. It is therefore the total 

transfer inductance of the primary switching loop referenced to the primary low-voltage side of the 

pulse transformer.

An important modification is made to the design results obtained. In Chapter 4 it was shown that 

the excitation of the CO2 laser can be improved by reducing the size of the peaking capacitors, 

which in this case is the output capacitor C3 of the final MPC stage (see Figure 5-2). The peaking 

capacitor size is reduced to a third of the calculated value in Table 5-4, i.e. C3 = 3.8 nF. 

Furthermore, the transfer inductance in the final MPC stage is left unchanged to prevent reduced 

discharge stability (see Section 4.2.4). Thereby the transfer time of the final compression stage is 

reduced to 128 ns resulting in a voltage rise time of approximately 80 ns across the peaking 

capacitors.

5.1.3 Pulsed power circuit components

In a practical set-up it is possible to construct the saturable inductors o f the MPC unit and the 

transfer inductance of the primary switching unit quite accurately. However, the C-C transfer 

capacitors have to be constructed as capacitor banks consisting of a number of parallel-connected 

capacitors, which are only available in discrete values. It is therefore not possible to exactly obtain 

the correct capacitor values calculated in Table 5-4. A summary of the values o f the C-C transfer 

capacitors and more details about the composition o f the capacitor banks are given in Table 5-5.

The capacitor values can be closely matched with a maximum difference of 3.9 % between the 

practical used and calculated capacitor values. This deviation is very small and can be neglected.
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Calculated
value

Practical
value

Difference Detail

Co 1.67 pF 1.65 pF - 1 .2 % 2 series connected capacitor banks with 7 
parallel 0.47 pF / 2000 V snubber capacitors 
each. Total voltage rating of 4000 V.

c, 10.4 nF 10.76 nF +3.5 % 6 x 1.7 nF / 40 kV + lx  560 pF / 40 kV parallel 
high-voltage ceramic capacitors

c2 10.9 nF 11.32 nF +3.9 % 6 x 1.7 nF / 40 kV + 2x 560 pF / 40 kV parallel 
high-voltage ceramic capacitors

C3 3.8 nF 3.68 nF -3.2 % 4x 920 pF / 40 kV parallel ceramic capacitors

Table 5-5: Practical capacitor values.

5.1.4 Pulsed power circuit simulation

In order to verify the design carried out in the previous section the circuit has been simulated using 

PSpice. The complete circuit with MPC unit and laser discharge can be simulated by using the Jiles- 

Atherton model for he MPC cores and a physical discharge model for the laser discharge. The MPC 

core and laser discharge models are discussed in Appendix A. The advantage of using a physical 

discharge model is that the discharge process can also be simulated. This also makes it possible to 

simulate the circuit behaviour during and even after the laser discharge. The simulated circuit is 

depicted in Figure 5-3 and the simulated current and voltage waveforms are shown in Figures 5-4 

and 5-5, respectively. The core reset windings are included to simulate the reset of the saturable 

cores. The transfer resistances were calculated from the damping factors given in Table 5-4. Each of 

the saturable inductors is simulated by two inductors. The inductors Lsatl and Lsat2 simulate the 

voltage hold off and the other inductors LI and L2 the saturated transfer inductance. A simple time- 

dependent switch was used to simulate the IGBT. Note that an inductance (Ldisch) has been added 

between the peaking capacitor and the laser electrodes. This inductance simulates the parasitic 

inductance of the laser head, which is approximately 20 nH.

The voltage and current waveforms of the different MPC stages are shown in Figures 5-4 and 5-5. 

The obtained voltage and current waveforms are satisfactory and the switching times o f the MPC 

inductors, peak transfer currents and voltages correspond well to the values in Table 5-4, indicating 

that the design is satisfactory. Note that the output voltage waveform of the final MPC unit is
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different than calculated in Table 5-4, due to the reduced peaking capacitor size [40]. Consequently, 

the output voltage rise-time is reduced.
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Figure 5-3: Simulated pulsed power supply circuit.

Time [|is]

Figure 5-4: Simulated current waveforms.
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35000

Time [|is]

Figure 5-5: Simulated voltage waveforms.

In Figure 5-6 the output voltage waveform and transfer current in the final MPC stage are shown in 

more detail. The simulated discharge current is also shown. The simulated waveforms strongly 

resemble the measured waveforms in Chapter 4 (see Section 4.4) for the case where Cp = V3 Cs. As 

expected the initial electrode voltage rise-time is approximately 80 ns after which the laser 

discharge is initiated. As discussed in Chapter 4 an initial discharge current pulse, fed by the 

peaking capacitor, is obtained. This is followed by a secondary discharge, where the remaining 

energy is transferred from the previous capacitor bank (C2, see Figure 5-3) directly into the 

discharge. This is clearly shown by a second maximum in both the discharge current and the 

transfer current of Loop2. Furthermore, it can be seen that the reverse overshoot voltage is 

relatively small, indicating good matching conditions.

In Figure 5-7 the energy deposition into the discharge is shown as a function o f time. The graph was 

calculated in the same way as discussed in Chapter 4 (see Section 4.4). Again, as measured in 

Chapter 4 (see Figure 4-32), the energy is deposited into the discharge in two successive steps. 

First, the initial discharge is obtained, followed by the secondary discharge. During the secondary 

discharge the remaining energy in capacitor C2 of the previous MPC stage is deposited into the 

discharge. According to the simulation approximately 3.5 J is transferred into the laser discharge. 

This is approximately 70 % of the initial stored energy in the primary storage capacitor.

107

Stellenbosch University http://scholar.sun.ac.za/



Time [jis]

Figure 5-6: Close-up of simulated output voltage, discharge current and transfer current of Loop2.

Time [jxs]

Figure 5-7: Energy deposited into discharge.

In general there is a close correlation between the waveforms measured in Chapter 4 and the 

simulated waveforms shown in Figures 5-6 and 5-7. This is an indication that the physical laser 

discharge model is a good approximation of the real discharge processes obtained in a CO2 TEA 

laser. In Chapter 7 the simulated and measured output voltage waveforms are shown and compared 

(see Figure 7-4).
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5.2 Primary switching unit construction

Aspects that have to be addressed during the construction of the primary switching unit include the 

construction of the IGBT drivers, charging of the initial storage capacitor and obtaining a transfer 

inductance that results in the correct transfer time of the primary C-C transfer loop.

5.2.1 Charging of the storage capacitor

The input storage capacitor Co (see Figure 5-8) is charged by a separate charging supply. During the 

charging cycle of the storage capacitor, the IGBT is off and the DC charging path is routed through 

the primary of the pulse transformer. The charging and pulse current magnetize the transformer core 

in opposite directions. Therefore, the charging current can simultaneously be used to reset the 

transformer core. Consequently, the total flux swing of the core is increased as discussed in 

Section 5.3.

LO PT

Figure 5-8: Charging supply protection.

It is important to notice that the charging supply is short circuited as soon as the IGBT is switched. 

This causes the output capacitance of the charging unit to discharge, resulting in large surge 

currents. In order to protect the charging supply a current limiting device has to be added as shown 

in Figure 5-8. The simplest way to limit the surge current is to make use of a decoupling inductor. 

However, a relatively large ferrite or iron powder core has to be used for the decoupling inductor, 

which can be very costly. A cheaper solid-state current limiter has been developed and is being used 

to protect the charging supply. The design is discussed in more detail in Appendix B.
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5.2.2 IGBT drivers

The IGBTs are switched by special gate driver circuits. The drivers are electrically fully isolated by 

isolating DC-DC converters and opto-isolators. This reduces EMI (electromagnetic interference) 

and allowes the floating IGBTs in a series-stacked configuration to be switched. The DC-DC 

converters supply power to the isolated gate driver stages. The IGBT driver unit is triggered via a 

fibre-optic cable further reducing the possibility of EMI. The basic layout of the IGBT drivers for 

two series-stacked IGBTs is shown in Figure 5-9 and a detailed circuit diagram is shown in 

Appendix B.

The driver unit circuit is constructed on a double-sided PCB where one side is used as a ground 

plane in order to reduce EMI and stray inductances in the gate driver circuit [27]. The IGBT driver 

unit has to be mounted as close as possible to the IGBT module to minimize the parasitic 

inductance of the connections between the gate drivers and the IGBT gate. The gate o f each IGBT 

is protected by two back-to-back Zener diodes to prevent over-voltages and damage to the gate of 

the device. The parameters of the driver unit are summarized in Table 5-6.

DC-DC converter

Dre-optic
:able

Vsupply

Figure 5-9: IGBT driver unit layout.
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Gate resistor, Rg 2  Q

On-state gate voltage, Fc(on) 18 V

Off-state gate voltage, Kc(off) - 6  V

Supply voltage, Fsuppiy 12 to 18 V

Table 5-6: Design specifications of the IGBT driver unit.

The gate resistor was chosen as small as possible (see datasheets in Appendix C) to increase the 

switching speed of the IGBT, but without causing gate drive instabilities due to the gate inductor 

and internal gate capacitances as discussed in Chapter 3. Note that the applied off-state gate voltage 

is negative, resulting in a faster turn-off response and more immunity against EMI.

5.2.3 Transfer inductance

The C-C transfer loop of the primary switching unit includes the pulse transformer, which is used to 

step up the voltage to the needed excitation voltage. As discussed in Chapter 2 the total transfer 

inductance of the primary switching unit is comprised of the transformer leakage inductance and the 

external added inductance. The external inductance Zo,ext that has to be added on the primary side of 

the pulse transformer to obtain the needed total transfer inductance is simply:

■ ^ o .e x t  =  A )  ~  - ^ O .le a k  5

where Lo is the total needed transfer inductance given in Table 5-4 and Z,o,ieak the total primary 

equivalent leakage inductance of the pulse transformer. As shown in Section 5.3 the constructed 

pulse transformer was measured to have a leakage inductance o f Zo.ieak = 700 nH ± 5%. For a total 

transfer inductance of Lo = 2.18 pH the externally added inductance must be Lo.ext= 1 -48 pH.

5.3 Pulse transformer design and construction

In this section the design and construction of the pulse transformer is discussed in more detail. In 

principle the design of pulse transformers for laser pulsed power supplies does not differ from 

switch mode power supplies, but in general the voltage ratings are higher and pulse durations are
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shorter in laser pulsed power supplies. Consequently, the insulation of transformer windings and 

core saturation due to the high voltage ratings, as well as larger core losses due to the short 

transformed pulses pose additional problems, which have to be addressed.

5.3.1 Design outline

The design procedure for switch mode transformers is well documented [11][27] and can be 

adopted for pulse transformer design. A shortened version of a transformer design process proposed 

by N. Mohan, T.M. Underland and W.P. Robbins [27] is outlined in a flowchart shown in 

Figure 5-10. The proposed design procedure can be iterative as indicated in the flow chart. 

However, the transformer can most often be designed by a single pass through the design procedure 

by choosing the transformer core wisely. Another transformer design approach, which is not 

discussed in this thesis, is through frequency domain modelling [43] of the pulse transformer.

Figure 5-10: Flow chart o f a pulse transformer design procedure.
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Step 1 Determine transformer ratings

After completing the circuit design of the primary switching and MPC units (see Section 5.1) 

the resulting transfer current and pulse voltages at the transformer terminals are known. Other 

parameters that have to be determined are the maximum power throughput of the transformer 

and the pulse width of the applied current/voltage pulses.

Step 2 Choose transformer core

The core material can either be a ferrite material or a laminated iron core, but it is advisable to 

use laminated iron cores in high-voltage applications as discussed in Section 2.4.3. After 

choosing the core material the appropriate core size can be selected which will be able to 

handle the maximum power throughput as calculated in step 1 .

Step 3 Determine primary and secondary number of turns, Np and Ns

The minimum number Np of primary turns, which will prevent core saturation can be calculated 

using Equation 2.42. Consequently, the secondary number of turns N„ can be calculated using 

the turns ratio determined in the primary switching unit design in Section 5.1.

Step 4 Determine conductor sizes

There are different approaches in choosing the transformer conductor size, but the simplest way 

is to choose a conductor size which will result in an acceptable current density. The large 

amount o f electric insulation needed in high-voltage pulse transformers reduces the cooling of 

the transformer windings and a current density of between 2 and 4 A/mm is acceptable. The 

winding configuration (e.g. solid copper foil, Litz wire, etc.) is chosen to minimize the skin 

effect [27] for fast voltage pulses. Knowing the winding configuration, the copper fill factor pcu 

can be estimated and it can be determine whether the transformer windings will fit into the 

winding window of the transformer core.

Step 5 Estimate leakage inductance

The leakage inductance can be calculated using Equation 5.1 (see next section) and should not 

exceed the total transfer inductance of the C-C loop into which the transformer is inserted.

Step 6 Estimate transformer losses

Using equations given in Section 2.4.4 the transformer losses can be estimated. If the losses are 

too high the transformer has to be re-designed, using a different core and/or core material.
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5.3.2 Design and construction

Transformer ratings

As shown in Figure 5-2 the pulse transformer is inserted into the C-C transfer loop of the primary 

switching unit. Using previous design results (see Table 5-4) the ratings o f the pulse transformer 

can be specified and are shown in Table 5-7. The primary and secondary RMS currents were 

calculated using Equation 2.21.

Turns ratio, a 13

Peak primary pulse current, /p>peak 1405 A

Primary switching unit charging voltage, V0 2430 V

Pulse transfer time, r 4.3 jas

RMS primary current, IPtr m s  @ /rep = 600 Hz 50.4 A

RMS secondary current, Ip,r m s  @ /r e p  = 600 Hz 3.88 A

Maximum allowable leakage inductance 1.25 (0.H

Pulse energy 4.65 J

Maximum power throughput @ /rep = 600 Hz 2790 W

Table 5-7: Design specifications of the pulse transformer.

Core selection

As already mentioned, in order to minimize the transformer size for high-voltage applications a core 

material with a large saturation magnetic flux density is needed (see Section 2.4.3). To prevent 

saturation of the transformer core a larger magnetic flux swing will result in smaller core cross- 

sections and/or less turns. Consequently, laminated iron cores are considered due to their relative 

large saturated flux density (between 1.2 and 1.7 T), but the lamination thickness o f the core has to 

be small in order to reduce eddy current losses induced by fast transformer voltage pulses.

A laminated iron core with a lamination thickness of 50 (im is used. A diagram of the core is shown 

in Figure 5-11 and a summary of the core dimensions and parameters is given in Table 5-8. The 

core consists of two U-type cores, which are placed face-to-face.
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Figure 5-11: U-type core assembly.

Saturation flux density, 5 sat 1.7T
Dimensions: a 

b 
c 
e 
f 
g

88.9 mm (3.4 in) 
50.8 mm (2.0 in) 
12.7 mm (0.5 in) 
63.5 mm (2.5 in)
25.4 mm (1.0 in)
25.4 mm (1.0 in)

Winding window cross-section, Aw 16.1 cm2

Core cross-section, Acore 3.2 cm2

Table 5-8: Transformer core dimensions and parameters.

Number of primary and secondary turns

As discussed in Section 5.2.1 the charging current of the primary storage capacitor flows through 

the primary of the pulse transformer. Furthermore, charging current and pulse current flow in 

opposite directions. The charging current effectively resets the transformer core. Just before the 

IGBT switches to generate the primary voltage pulse the magnetic flux density in the core should be 

equal to the reverse remnant magnetic flux density, with 5 core(reset) = -0.5 T. The allowable change 

in the core flux density during the transfer o f the pulse is therefore AB = Bsat -  5 core(reset) = 2.3 T. 

Using Equation 2.40 the number of primary and secondary turns can be calculated.
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Np 8

Ns @ a = 13 104

Table 5-9: Number of turns for the primary and secondary transformer windings.

The calculated number of primary turns is 7, but an additional turn is added to allow a small amount 

of headroom in the magnetic flux swing. The resulting flux change due to 8  turns is AB -  2.0 T. 

Additionally, the voltage difference per turn is Vn = 303 V @ Vo = 2422 V.

Winding configuration

The most important consideration during the choice of the primary and secondary winding 

configurations is the maximum RMS transformer current and the skin effect of the conductor 

current:

Skin depth, 8 : As shown in Table 5-7 the transfer time of the pulses applied to the transformer in 

the primary switching loop is t  = 4.3 (as, which results in a bandwidth of between 200 and 

300 kHz. The resulting skin depth £ is approximately 0.15 mm [13] [27].

Current density, J  : The RMS current density 7rms in the transformer windings should not 

exceed between 3 and 4 A/mm2 [4]. In many switch mode transformers the current density 

can be higher, but due to the high secondary transformer voltages (up to 30 kV) it was 

decided to encapsulate the transformer windings. The encapsulation and insulation material 

used between winding layers has a poor thermal conductivity and increases the thermal 

resistance o f the transformer windings to the surrounding environment.

It was found that the best winding configuration for the primary winding is a solid ribbon conductor 

due to the relatively high primary RMS current of / p ,r m s  = 50.4 A (see Table 5-7). The ribbon 

conductor consists o f a copper strip with a maximum thickness o f twice the skin depth. Taking 

insulation into account the copper fill factor for the primary ribbon conductor is approximately 

pp = 0.5. Details about the primary winding configuration are shown in Table 5-10.
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Conductor geometry Solid ribbon 
50 mm

*---------* $ 0 3 w m

Conductor cross-section, ANjj 15.0 mm2

Current density, Jp @ / p ,r m s  = 50.4 A 3.4 A/mm2

Copper fill factor, pp 0.4

Primary winding window, AWiP 3.0 cm2

Average length of single winding, lp 1 0 . 2  cm

Table 5-10: Primary winding configuration.

A ribbon cable, consisting of several individual enamelled copper wire strands placed side by side is 

used for the secondary winding. Litz wire was not considered due to a poor fill factor. The radius of 

a single strand of the ribbon cable should not exceed the skin depth of 0.15 mm. The fill factor for 

the chosen conductor geometry and taking insulation into account is approximately ps = 0.2. Details 

about the secondary winding configuration are shown in Table 5-11.

Conductor geometry 14-Wire ribbon
4.2 mm

K----------H .
aooroooooax) ^0 .3  mm

Conductor cross-section, A ^ 0.99 mm2

Current density, Js @ 4rm s = 3.88 A 3.9 A/mm2

Copper fill factor, ps 0 . 2

Primary winding window, AWtS 5.1 cm2

Average length of single winding, ls 22.9 cm

Table 5-11: Secondary winding configuration.

For both the primary and secondary windings the current density is below 4 A/mm2 and is therefore 

acceptable. The total area occupied by the primary and secondary windings is AWJ} + Aw<s = 8.1 cm2, 

which is only 50 % of the total winding window cross-section Aw, leaving sufficient space for the 

transformer bobbin and winding encapsulation. A diagram of the transformer windings is shown in 

Figure 5-12.
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Figure 5-12: Cross-sectional diagram of the pulse transformer.

In high-voltage transformers insulation is an important issue. As mentioned earlier, the transformer 

is encapsulated in special insulating resins, with which inter-winding flashover and corona 

formation can be prevented. For the primary winding each winding layer consists o f a single ribbon 

winding and the peak inter-layer potential difference is therefore equal to the potential difference 

per winding, Vn = 303 V. The inter-layer insulation of the primary winding is thus not too critical. 

For the construction thin Mylar sheeting or any other type of plastic sheeting that can handle 

temperatures up to 100 °C can be placed between the primary winding layers. The secondary 

winding is wound taper in order to increase the insulation clearance for the higher voltage windings. 

The maximum number of secondary turns per layer is 11 and the maximum secondary inter-layer 

potential difference is thus 22-Vm — 6700 V. Special care must be taken to insulate the secondary 

layers. This can be achieved by placing a layer of Mylar sheeting (100 to 200 (im thickness) 

between the secondary layers.

Transformer leakage inductance

Mohan, et al. [27] gives an estimated solution for the integral Equation 2.39 for the winding
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configuration shown in Figure 5-12:

MaNllb
I  5 i

leak — ’ J - 13 h

where / is the average length of a single winding, b the total radial width and h the total height of 

the primary and secondary windings (see Figure 5-12). Using the above formula the estimated 

leakage inductance of the designed transformer is L\eak = 800 nH (/ = 11 cm, b = 1 cm, h = 5 cm). 

This is acceptable, because it is less than the total transfer inductance of 2.18 |iH calculated for the 

primary switching loop (see Table 5-4).

Transformer losses and efficiency

The analysis of the transformer losses in Chapter 2 can now be used to calculate the transformer 

conduction and core losses.

Hysteresis losses: The hysteresis losses are difficult to calculate, because the exact BH-curve has 

first to be measured. Normally, the hysteresis losses for iron cores are specified in the core 

data sheets. For a complete magnetization cycle the specific energy loss due to hysteresis is 

approximately £hys,sP = 5 W/kg. The total core weight (of two U cores) is mC0Te = 0.54 kg.

Eddy current losses: The resistivity of core iron is approximately pcore = 4-1 O' 7 Qm [27], Using 

Equation 2.49 (AB = 2.0 T, f Tep = 600 Hz, d = 50 jam, r  = 4.3 |j.s) the specific eddy current 

loss can be calculated with P ec,sp = 1.82-106 W/m3 (total core volume is Volcore = 70.2 cm3).

Conduction (copper) losses: From the conductor cross-sections, average wire length and current 

densities specified in Tables 5-10 and 5-11 the conduction losses can be calculated using 

Equation 2.55 (p tu = 2.2-10' 8 Qm).

A summary of the transformer losses and efficiency at the maximum repetition rate, / rep = 600 Hz, 

and power throughput, P = 2790 W, is given in Table 5-12.
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Hysteresis losses, Phys 1.6 W

Eddy current losses, Pec 128 W

Primary conduction losses, PCJJ 3.1 W

Secondary conduction losses, PCJi 3.5 W

Table 5-12: Summary of transformer losses.

The total estimated transformer losses are approximately 136 W resulting in an efficiency 

of 95.1 %.

Thermal considerations and cooling

The chosen transformer core has typically a thermal resistance in air (core to ambient) of 

ê,core = 2.74 °C/W. For the core losses calculated in the previous section this will result in a 

temperature difference of AT = PlossesRe<con =350°C . This is much too high since a temperature

difference o f not more than AT=  100 °C is desirable. It is not possible to lower the transformer 

losses dramatically, because the eddy current losses contribute more than 80% of the total 

transformer losses. The eddy current losses can only be reduced by using a smaller core, thinner 

laminations and/or a longer current pulse. None of the above solutions are feasible, because cores 

with thinner laminations are not easily available and a longer current pulse will necessitate more 

MPC material, which is costly. The only solution is to use oil cooling which will also improve 

insulation between the external transformer terminals. Generally it is not desirable to use oil cooling 

in conjunction with lasers and laser optics, because of possible leaks and spills that can destroy 

sensitive optics. Oil cooling will however allow a much more compact design of both the pulse 

transformer and the magnetic pulse compression circuit, which will be discussed in the next section.

5.3.3 Transformer measurement

Open and short-circuit tests [28] were performed on the pulse transformer to experimentally 

determine the leakage inductance and magnetization impedance. The results obtained are 

summarized in Table 5-13. Note that all measured values are referenced to the primary side of the 

transformer.
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Total leakage inductance, L|eak 700 ± 20 nH

Magnetization inductance, Zmag 80 ± 5 nH

Inter-winding capacitance, Cm 5 nF ± 2 nF

Transformer ratio, a 13.05 ±0.05

Table 5-13: Summary of transformer measurements.

The measured leakage inductance is close to the estimated value. Furthermore, the magnetization 

inductance is much larger than the leakage inductance and the inter-winding capacitance is much 

smaller compared to the capacitors (approx. 1.67 fiF) in the C-C transfer loop. Thus, the pulse 

transformer satisfies the condition that the magnetization impedance must be much larger than the 

transfer impedance of the C-C transfer loop, i.e. z'mag «  it , as discussed in Section 2.4.1.

5.4 MPC unit construction

During the construction of the MPC unit special emphasis was placed on minimizing the size and 

simplifying the assembly o f the MPC unit. A modular construction approach was used. The 

different components o f the MPC unit, saturable inductors and capacitor banks, were pre-assembled 

separately as modules. The complete MPC unit can then be constructed quickly and easily. The 

construction of the saturable inductor modules and the final geometry o f the MPC unit are discussed 

in the following sub-sections.

5.4.1 Saturable inductor module assembly

As already mentioned, the saturable inductors were pre-assembled, and the pre-assembled modules 

can simply be bolted to the final MPC assembly. The assembly details of a saturable inductor with 

one core is shown in Figure 5-13.

The saturable core is placed between two PCBs. The PCBs are used to construct the inductor 

windings (not shown in Figure 5-13) by etching part of the windings onto the PCBs and soldering 

connection wires between the top and bottom PCBs to complete the winding configuration. The 

core is supported by flat core support plates that slide into grooves in the support pillars. The core
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support plates also provide a 3 mm spacing between the PCB plates and the core, to provide 

insulation between the etched windings on the PCBs and the inductor core. The top and bottom 

PCBs are simply bolted to the support pillars. Special mounting plates are bolted onto the top and 

bottom of the inductor assembly and are used to mount the inductor modules to the final MPC unit. 

The assembly of a MPC module with two saturable cores is similar to the assembly shown in Figure 

5-13, except the support pillars are elongated and additional core support plates are added to hold an 

additional core. An additional advantage of the proposed inductor module assembly is that support 

pillars, core support plates, spacers, mounting plates and PCBs can be manufactured in large 

quantities and assembled easily and quickly. Note that holes in the middle of the mounting plates 

and PCBs are provided for the reset winding, which consists of a single turn fed through the centre 

of the inductor module.
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After the inductor module has been assembled connection wires are soldered between the top and 

bottom PCBs to complete the inductor winding. To illustrate the method of using PCBs to construct 

inductor windings the PCB artwork of the 15-tum MPC inductor o f the second MPC stage is shown 

in Figure 5-14. The artwork of the top and bottom PCB’s are identical, but are rotated 90° with 

respect to each other. The winding assembly consists out o f four paralleled 15-tum windings each 

wound around one quarter of the inductor core. The windings terminate 90° apart and are therefore 

well separated with good electrical insulation between the inductor terminals.

Figure 5-14: PCB artwork used for the winding configuration of MPC inductors.

5.4.2 MPC unit assembly

The complete MPC unit assembly is enclosed in an oil tank and placed on top of the laser head. Due 

to the high voltages the MPC unit has to be submerged in transformer oil to improve the electric 

insulation. Furthermore, the transformer oil improves the cooling o f the MPC inductor cores.

Usually the MPC unit layout is based on a coaxial design in order to minimize the parasitic 

(external) inductance in the MPC C-C transfer loops. This could otherwise result in poor 

compression ratios. The coaxial layout is often used in the excitation o f Excimer lasers where very
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fast voltage rise times (< 80 ns) are needed and the parasitic inductances must be very small. 

However, in CO2 TEA lasers the voltage rise-times are less critical (see Chapter 4) and different 

approaches in the MPC unit layout can be used.

It was decided to use a rectangular geometry to construct the MPC unit. The basic electrical and 

mechanical layout of the MPC assembly is shown in Figure 5-15. The two MPC stages are stacked 

vertically and the capacitors of the MPC stages are connected on either side of the MPC inductors. 

The last stage is located at the bottom of the MPC stack and rests on top of the feed-throughs that 

connect the peaking capacitor bank to the laser electrodes. The mounting brackets and mounting 

plates also act as electrical connections between the capacitors and inductors of the MPC assembly. 

A three-dimensional model of the complete MPC assembly is shown in Figures 5-16 and 5-17.

Connecting mounting 
bracket bewteen 
LI and Cl

Connecting mounting 
bracket between 
L1/L2 and C2

Grounded 
oil tank

insulated feed-through 
to laser top electrode 

(bottom electrode is grounded)

MPC inductor module 
mounting plates

Grounded mounting bracket 
for MPC capacitor banks

Grounded base plate

Figure 5-15: Basic electrical and mechanical layout o f the MPC unit assembly.
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MPC inductor MPC inductor
module L] of 1. module L2 of 2. 
MPC stage MPC stage

Feed-through to Peaking Capacitor
laser top clectrode bank C3

Figure 5-16: Three-dimensional model of complete MPC unit assembly (front view).

Grounded 
capacitor bank 
mounting bracket

Connection 
brackets between 
MPC inductors 
and capacitors

Hole through 
which reset 
winding is fed

MPC inductor 
module mounting 
plates

Figure 5-17: Three-dimensional model of complete MPC unit assembly (elevated view).

The transfer capacitors of the MPC unit, C\, C2 and C 3 are constructed as capacitor banks by 

paralleling high-voltage high-performance ceramic capacitors (TDK high-voltage capacitors) to 

obtain the correct capacitance values as specified in Table 5-5. The two capacitor-bank-assemblies 

on either side of the MPC inductors, consisting of the ceramic capacitors banks and capacitor
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mounting brackets can also be pre-assembled. To complete the MPC unit assembly the capacitor 

banks are bolted to the grounded base plate and the mounting plates of the inductor modules .

To determine the exact parasitic inductances of the proposed MPC layout the exact current 

distribution in the MPC unit during pulse compression must be known, which is practically 

impossible. As a first-order estimate, the parasitic inductance of the MPC stages can be 

approximated by rectangular tubes as shown in Figure 5-18. The two loops created by C\, C2 and L\ 

can be approximated as two identical rectangular tubes each with an inductance Z-tubei- Similarly, the 

two loops created by C 2 , C 3 and Lj can also be approximated as two rectangular tubes with 

inductance Z.tube2 - The inductance of a tube with length / and cross section A is given by [13]:

The two tube inductances for each MPC stage are effectively in parallel and Zpar 1 = /iL{û \ and 

•£Par2 = ‘/ 2 t̂ube2 , where Z,pari and Zp a r 2 are the parasitic inductances of the first and second MPC 

stages, respectively. For the two constructed MPC assemblies the cross-sections o f tube 1 and 

tube 2 are approximately A 1 = 65 cm2 and Ai = 70 cm2, respectively. The length o f the MPC unit is 

approximately / = 20 cm. Using Equation 5.2 the parasitic inductances of the first and second MPC 

stages can be estimated, with Z,par 1 = 20 nH and Z,p a r 2  = 22 nH. These results are close to 20 nH 

estimated for the MPC design (see Table 5-4).

Figure 5-18: Approximation of MPC stage parasitic inductance for rectangular MPC unit layout.
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Chapter 6

Reliability

Before the pulsed power supply designed in the previous chapter can be finally implemented it is 

important to determine the reliability of the proposed IGBT (SKM300GB174D from Semikron). 

The reliability o f the IGBT includes the following:

■ The IGBT should have a long lifetime, which is comparable or even better than the lifetime 

of Thyratrons (>109 shots)

■ The IGBT should withstand fault conditions (e.g. laser arcing, etc.)

In this chapter the experimental test set-up for determining the lifetime of an IGBT in a pulsed 

power supply is discussed as well as the results obtained from the lifetime tests are presented. The 

second part of this chapter also deals with the fault handling capability o f an IGBT including 

protection circuits that can be used to improve the overall reliability of the IGBT switch. Finally, 

the effect of EMI is discussed and design considerations are identified with which EMI can be 

reduced.

6.1 Lifetime testing

As discussed previously the IGBT switches short pulses with a large peak current, but with a 

relatively small average current. It is therefore economical advantageous if  the average current 

rating of the IGBT can be less than peak pulse switching current. In the design proposed in the
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previous chapter the peak switching current of the IGBT is between 4 and 5 times the rated current 

of the device. Little information is available on the reliability and lifetime o f IGBTs under these 

conditions. In this section a test set-up for lifetime testing is discussed.

During lifetime testing the device under test (DUT), in this case the IGBT, has to be subjected to 

similar conditions as would be obtained during normal operation in a laser pulsed power supply. 

Normal operation refers to operational conditions without circuit errors and fault conditions, i.e. no 

flash-over on the high voltage side of the circuit and no unstable discharges. The aim is to switch 

the IGBT for up to 109 times. For each switching cycle the IGBT is subjected to current and voltage 

waveforms, which are similar to waveforms obtained under normal operating conditions.

Additional useful information can be obtained if the IGBT is also monitored during the lifetime 

testing in order to determine changes in the characteristics of the device. Changes in the IGBT’s 

electrical and thermal characteristics can be used to determine degradation of the IGBT’s 

performance before the device fails [34],

6.1.1 Test set-up

As mentioned earlier the experimental test set-up for lifetime testing should provide switching 

voltage and current waveforms similar to waveforms obtained in the proposed pulsed power supply. 

The simplest circuit that can be used to obtain the needed switching conditions is a damped RLC 

(resistor R, inductor L and capacitor C) circuit and a diagram of the test set-up for lifetime testing is 

shown in Figure 6-1.

High Voltage

Figure 6-1: Experimental set-up for IGBT lifetime testing.
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The RLC circuit is very similar to the C-C transfer circuit discussed in Chapter 2. The capacitor C

of the RLC circuit is charged by a high-voltage charging supply to an initial voltage Vo. A current 

limiter is used to protect the charging unit against a short circuit during the turn-on cycle of the 

IGBT as discussed in Chapter 5. As soon as the IGBT is turned on by the IGBT driver unit, the 

RLC circuit can freely oscillate through the IGBT. It is important to note that the IGBT module has 

a built-in reverse diode and the current through the IGBT module can therefore reverse. 

Consequently, while the IGBT is turned on the IGBT module acts as a bi-directional switch. The 

switching voltage and current waveforms are monitored by a high voltage probe (Tektronix P6015A 

high voltage probe, X I000 and 70 MHz bandwidth) and a current probe (Pearson 1025 current 

probe, rise-time 100 ns), respectively. The component values o f the RLC loop are now chosen to 

obtain a switching current waveform that best matches the simulated sinusoidal current pulse shown 

in Figure 5.4.

To determine the needed RLC component values the current response of the RLC loop has to be 

determined. The response is identical to the response of a damped C-C transfer loop (see 

Equation 2.1) except that only a single capacitor is used instead of two:

voltage is shared equally between the two IGBTs. For the lifetime tests only one IGBT at a time is 

tested and the switching voltage per IGBT is half the total switching voltage specified in Chapter 5. 

To match the response o f the RLC circuit, the RLC components must be chosen to obtain a peak 

switching current of /iGBT,Peak = 1405 A at a charging voltage o f Vo = 1215 V with an effective 

transfer time of r = 4.3 |as. Furthermore, to obtain a current pulse the RLC oscillation must be 

sufficiently damped so that only the first half oscillation cycle is prominent and any further 

oscillations are suppressed. The chosen RLC component values are specified in Table 6-1.

coL
(6.1)

with a  = —  and 
2 L

Note that the switching voltage in Chapter 5 is specified for two series-stacked IGBTs where the
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R 0.4 Q

L 780 nH

C 3.8 |^F

Table 6-1: Circuit values for lifetime test set-up.

The measured IGBT current waveforms of the RLC circuit as compared to a current waveform 

obtained in the proposed pulsed power supply is shown in Figure 6-2. The RLC current waveform 

is approximately 30% longer than typical pulses obtained in the pulsed power supply due to the 

relatively strong damping. The peak current and current rise-time are well matched. The oscillation 

of the RLC current cannot be completely eliminated and after the positive current pulse the current 

overshoots and a relatively small negative current pulse is obtained. The overshoot of the negative 

current pulse is approximately -300 A. This is within the current rating of the IGBT’s internal 

reverse diode and should therefore not pose a problem.

Time [|is]

Figure 6-2: Current waveform obtained for IGBT lifetime testing.

6.1.2 Measurement of IGBT characteristics

As discussed in Chapter 3 the switching of pulses with large peak currents can lead to the formation 

of cracks inside the IGBT due to thermal stresses. The formation o f cracks mainly occurs at
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material interfaces, i.e. between layers inside the IGBT’s silicone wafer and between the silicone 

wafer and solder contacts [16]. Degradation of the IGBT due to crack formation changes the IGBT 

characteristics over time, resulting in an increase in thermal resistance and on-state voltage 

drop [34]. As already mentioned, measurement of the IGBT characteristics during the lifetime tests 

can give an indication whether the switching conditions induce degradation in the device before the 

IGBT completely fails. Measurement procedures for measuring the thermal resistance and electrical 

characteristics of the IGBT are discussed in the remainder of this sub-section.

Therm al resistance

In principle to determine the steady state junction-to-case thermal resistance R,hjC power has to be 

dissipated inside the device and the difference A7}c between the internal junction temperature 7} and 

the external case temperature Tc of the IGBT has to be measured. The thermal resistance as used in 

Equation 3.24 is defined as

A T,r
(6-2)

IGBT

where P ig b t  is the power dissipated in the IGBT. It is practically impossible to directly measure the 

junction temperature of the IGBT with a temperature probe. Fortunately the internal reverse diode 

of the IGBT module is located closely to the IGBT and the temperature dependence of the diode 

forward voltage drop can be used to measure the internal wafer temperature. The wafer temperature 

can be assumed to be equal to the junction temperature of the IGBT [33]. In the following 

paragraphs a procedure for measuring the thermal resistance of an IGBT is discussed and the 

measurement set-up is shown in Figure 6-3.

The IGBT is mounted on a large heatsink with a relatively large thermal capacity in order to keep 

the case temperature as close as possible to the ambient temperature and to reduce variations in the 

heatsink temperature. Thus, with a large heatsink it can be assumed that the heatsink temperature is 

constant compared to the internal junction temperature of the IGBT [2][33]. With good thermal 

coupling between the heatsink and the IGBT case it can be assumed that the heatsink and IGBT 

case temperatures are equal, Tc = 7heatsink- The case temperature of the IGBT can be determined by 

measuring the heatsink temperature close to the IGBT with a temperature probe.
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Figure 6-3: Measurement set-up to determine the thermal resistance o f an IGBT.

It is not possible to simultaneously heat the IGBT and measure the internal temperature of the 

IGBT. Therefore, the thermal resistance measurement consists of two steps [2][33]:

1. Heating cycle: First the IGBT is heated internally by conduction losses. The relay in 

Figure 6-3 is turned on and a voltage source Vs is connected across the collector and emitter 

o f the IGBT. A gate voltage is applied with which the IGBT is turned on to conduct in a 

saturated state (see Chapter 3). The gate voltage is adjusted to obtain an acceptable collector 

current not exceeding the current rating of the voltage source. The internal conduction loss 

o f the IGBT during the heating cycle is simply

P  = V I■*1087 s c '

For this experiment a voltage source with VS = 2 0 V  was used and the gate voltage was set to 

obtain a collector current Ic = Is = 5 A  (the probe current 1/ can be ignored). The resulting 

conduction loss is thus Pigbt = 100 W. The duration of the heating cycle has to be long 

enough to obtain thermal equilibrium, i.e. until the internal temperature of the IGBT has 

stabilized. This eliminates the effect of the internal heat capacity o f the IGBT. The duration 

of the heat cycle can be estimated from the transient thermal impedance graph of the IGBT 

shown in Figure 3-17. The transient thermal impedance of a single pulse increases with the 

pulse duration until for relatively long pulse durations the transient thermal impedance stays 

more or less constant. The minimum pulse duration for which an increase in pulse duration 

does not dramatically change the transient thermal impedance is more or less equal to the
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thermal time constant xth of the IGBT. In a practical set-up to be certain to obtain thermal 

equilibrium the heating cycle must be much longer ( > 1 0  - xth) than the thermal time constant. 

For large IGBT modules, like the SKM300GB174D used for this project, the estimated 

thermal time constant is approximately xth -  0.5 s and the heating cycle was chosen to be 10 

seconds long. Excessively long heating cycles (> 100-xth) are also not desirable and will only 

lead to an increase in the heatsink temperature.

2. Temperature measuring cycle'. After the heating cycle the relay is turned off and a reverse 

probe current If is passed through the IGBT module, thereby forward biasing the internal 

diode of the module. As mentioned earlier the forward voltage drop Vf over the diode can 

now be used to measure the junction temperature 7} of the IGBT. The junction temperature 

must be measured immediately after the relay has switched before the IGBT starts cooling 

down. The voltage of the diode was calibrated by placing the IGBT module on a hot plate 

and measuring the diode forward voltage drop at a fixed diode current as a function of 

temperature. Results for the SKM300GB174D module are shown in Figure 6-4. Note that 

over a temperature range from 20 to 85 °C the relationship between the diode forward 

voltage drop and temperature is linear and can be approximated by the equation shown in 

Figure 6-4.

T j  [°C]

Figure 6-4: Forward voltage drop vs. junction temperature (If= 1 mA) o f the internal reverse diode 
of the SKM300GB174D IGBT module from Semikron.
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Knowing the internal junction temperature for the power dissipated during the heating cycle and 

measuring the heatsink temperature the thermal resistance can be calculated using Equation 6.2.

Electrical characteristics

The electrical characteristics of an IGBT can be determined by conducting three different 

measurements as proposed by IGBT manufacturers [16]. The basic measurement set-up consists of 

a sine wave signal generator, which is connected to the IGBT terminals in three different 

combinations. The voltage across the connected IGBT terminals and the current into the terminals 

are measured and displayed as an XY-trace on an oscilloscope. The set-up and typical XY-traces for 

the three different measurements are shown in Figure 6-5 [16].
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C to E : The gate of the IGBT is shorted to the emitter, vge = 0, and the gate-emitter voltage is 

below the threshold voltage of the IGBT. For a positive collector-emitter voltage the 

IGBT may therefore not conduct and only the IGBT leakage current is observed. For 

negative collector-emitter voltages the internal diode starts conducting for Vce < -Vf, 

where Vf is the forward bias voltage of the internal diode. The following IGBT 

parameters can be tested:

o Leakage current of IGBT, Ice,leak < specified value 

o Observed voltage drop of diode, Vf= specified value

G to E\ In this configuration the gate of the IGBT is tested. The gate of the IGBT is insulated 

and due to a large gate resistance only a small gate current should be observed. The gate 

current is equal to the displacement current of the gate capacitance. Consequently, the 

amplitude of the gate current depends on the frequency of the applied signal and the 

gate capacitance value. A small current spike should be observed at the point where the 

gate-emitter voltage reaches the threshold voltage of the IGBT. The observed waveform 

must have the following characteristics:

o icE = 0  at maximum vge, i.e. the gate must be capacitive with voltage and current 

90 degrees out of phase, 

o A current spike at vge = Vn must be observed, indicating that the IGBT turns on 

at the threshold voltage.

C,G to E: The gate and collector are connected. This configuration is identical to the C-to-E 

configuration for negative applied voltages. For positive applied voltages the IGBT 

starts conducting as soon as the applied voltage is increased beyond the threshold 

voltage Vn- Therefore:

o Observed Vn = specified Vn-

6.1.3 Results

A single IGBT of a SKM300GB174D module was tested for 0 .5 1 09 shots at an average repetition 

rate of f rep = 500 Hz for a total test period of 278 hours. The amplitude of the switched current 

pulses was increased stepwise from 1300 A up to 1500 A and a summary o f the test conditions is 

given in Table 6-2.
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Range 
[ 1 0 6 shots]

Current pulse 
amplitude [A]

Switching 
voltage [V]

Pulse width [|as] Ambient 
temperature [°C]

Oto 1 0 0 1300 1 1 1 0

4.3 2 1100 to 400 1400 1 2 0 0

400 to 500 1500 1290

Table 6-2: Test conditions for lifetime testing.

During the test period the thermal and electrical characteristics of the IGBT were monitored in 

regular intervals. The measured thermal resistance RthjC for the test period is shown in Figure 6 -6 . 

The thermal resistance was initially measured to be 0.068 K/W, which is very close to the thermal 

resistance of 0.07 K/W specified by the manufacturer. After the first 100-106 shots the thermal 

resistance drops by approximately 15% to between 0.057 and 0.058 K/W. Thereafter the thermal 

resistance stays constant within the measurement accuracy. This is an indication that no measurable 

degradation in the thermal characteristics of the IGBT can be detected. The thermal resistance also 

stays constant for the test period, from 400-106 to 500-106 shots, where the peak pulse current is 

1500 A, which is 100 A above the peak current that will be obtained in the final pulsed power 

supply. The initial drop in thermal resistance is most probably caused by settling o f the heat 

conducting paste inside the IGBT module. This in turn is caused by internal heating of the IGBT 

due to switching and conduction losses, which lowers the viscosity of the heat conducting 

paste [34],

0.070

0.065

l  0.060 

i

0.055 

0.050
0 100 200 300 400 500 600

Number of Shots xlO*

Figure 6 -6 : Measured thermal junction-to-case resistance of IGBT during lifetime test.
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The measured electrical characteristics, namely the C-to-E, G-to-E and CG-to- E (see Section 6.1.2) 

traces are shown in Figures 6-7 to 6-9 for 0, 100, 200, 300, 400 and 500 million shots. All traces 

were obtained with a 20 V / 500 Hz sine wave signal and a signal generator output resistance 

of 50 Q.
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0.0

- 20.0

-40.0

<
E. -60.0 

•I
-80.0

- 100.0

- 120.0

-140.0

• 0
• 100 
* 200
• 300
• 400
• 500

-1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

vC£ [V]

Figure 6-7: Measured IGBT C-to-E electrical characteristics during lifetime test.
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Figure 6 -8 : Measured IGBT G-to-E electrical characteristics during lifetime test.
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Figure 6-9: Measured IGBT CG-to-E electrical characteristics during lifetime test.

From the traces no measurable degradation or change in the electrical characteristics of the IGBT 

can be detected. Furthermore, the IGBT characteristics that can be determined from the traces are 

summarized in Table 6-3 and correspond well to the manufacturer’s specifications (see 

Appendix C). Additionally, in the G-to-E trace the current spike at vce = Vn can be observed and 

the gate-emitter current is zero where the gate-emitter voltage is a maximum indicating that the gate 

is capacitive.

Vn 5.4 ±0.1 V

Vf @  100 mA 0.5 ± 0.05 V

I c e , leak < 1 mA

Table 6-3: Measured IGBT parameters.

6.1.4 Conclusion

From both the thermal and electrical measurements it can be concluded that the IGBT under test 

survived 0.5-109 switching cycles without showing signs of degradation. This is satisfactory for a 

preliminary test. However, it is not possible to build statistics on the lifetime of IGBTs in pulsed 

power supplies based on a lifetime test conducted on a single IGBT. It is therefore advisable to 

conduct more extensive lifetime tests, where at least 6  devices (according to Hitachi quality
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standards [16]) are tested for at least 109 switching cycles. Nonetheless, it is shown that IGBTs can 

be used in pulsed power supplies. In case of an IGBT failure it will also be much cheaper to replace 

an IGBT module compared to a thyratron, which can be between 5 and 10 times more expensive 

than an IGBT used in an equivalent pulsed power supply.

6.2 Fault handling capability

The possibility of fault conditions may not be excluded and some fault conditions occur relatively 

frequently (e.g. arcing between the laser electrodes). It is important to protect the IGBT against fault 

conditions to improve overall reliability.

6.2.1 Fault conditions and behaviour

The first step is to identify different fault conditions that may occur:

■ Flashover. Flashovers are true circuit failures, which should not occur and are caused by 

insufficient electric insulation on the high-voltage side of the pulsed power supply, i.e. the 

pulse transformer secondary and MPC unit. A flashovers can be approximated as a low- 

impedance connection between the two points of the flashover. Critical points in the pulsed 

power supply are the MPC saturable inductors and the pulse transformer secondary. 

Although the MPC unit is submerged in transformer oil, impurities in the oil may lead to 

non-destructive flashovers between the winding and core of the MPC inductors. Breakdown 

of the secondary insulation in the pulse transformer will lead to destructive flashovers inside 

the transformer winding and hence the transformer will have to be replaced.

■ Laser arcing-. Unstable discharges between the laser electrodes result in arcing. There are 

many causes for unstable discharges [2 0 ] and this type o f fault condition is the most 

frequent. Arcing discharges have a much lower impedance than typical stable discharges and 

arcing discharges can therefore be approximated as a short-circuit between the laser 

electrodes. However, a large portion of the pulse energy is dissipated in the arc discharge 

thereby significantly reducing the remaining energy in the pulsed power supply.

■ No laser discharge: No laser discharge is obtained when the excitation voltage is below the 

breakdown voltage of the laser gas medium or the laser is operated with an unsuitable gas
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mixture. With the absence of a laser discharge no energy can be deposited into the laser 

medium. Most of the pulse energy remains in the pulsed power supply and is reflected back 

to the primary switching unit.

Flashovers have highly non-linear characteristics, which can cause very unpredictable circuit 

behaviour and are also very difficult to simulate. In general it can be argued that flashovers disturb 

the propagation of the generated pulses though the MPC unit and will cause unwanted oscillations 

in the resonant transfer circuits of the MPC unit and primary switching unit. These unwanted 

oscillations can reduce the life-time of the IGBT. Due to the unpredictable nature of flashovers it is 

highly advisable to prevent flashovers by careful construction of the MPC unit.

Laser fault conditions, i.e. laser arcing and absence of laser discharges, on the other hand are not 

easily preventable and can occur frequently. Under laser fault conditions the initial C-C transfers in 

the pulsed power supply are unchanged and the voltage pulse propagates through the MPC unit as 

described in Chapter 2. As soon as the excitation pulse reaches the laser head, the fault occurs. Due 

to the fault condition not all the pulse energy can be deposited into the laser medium and a portion 

of the energy is reflected back to the primary switching unit. To illustrate this behaviour the circuit 

in Chapter 5 (see Figure 5-3) is simulated for the case where the laser fails to discharge. The 

simulated switching current waveform is shown in Figure 6-10. The reflection of the pulse energy 

causes the C-C transfer circuits in the pulsed power supply to oscillate unpredictably. The initial 

normal C-C transfer can be clearly seen in Figure 6-10, which is then followed by oscillations 

caused by the absence of a laser discharge. Note that the oscillations are weakly damped due to the 

low dissipative losses in the pulsed power supply and can last in the order of hundreds of 

microseconds. Similar waveforms were also measured and are shown in Chapter 7.

It is important to note that the absence of a laser discharge is a more sever fault condition than laser 

arcing. With the absence of a laser discharge no energy can be deposited into the laser medium and 

all the pulse energy is reflected back to the primary switching unit, whereas with laser arcing a large 

portion is of the pulse energy is dissipated in the arc discharge.
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Time [|is]

Figure 6-10: Simulated IGBT switching current under laser fault condition (laser fails to discharge). 

6.2.2 IGBT protection

Oscillation in the switching current due to fault conditions can pose two problems:

■ The weakly damped oscillations with current amplitudes much larger than the rated current 

of the IGBT place larger strains on the IGBT and internal diode of the IGBT module and 

therefore reduces the lifetime of the device.

■ The IGBT must be switched off at some stage to allow the input storage capacitor of the 

primary switching unit to be recharge for the next pulse. Keeping in mind that the IGBT is 

connected in series with the transfer inductance of the C-C transfer loop, an attempt to 

switch the IGBT off while current is still flowing through the transfer inductor will cause a 

large dz'Ak. This induces large voltages in the transfer inductor resulting in dangerously high 

over-voltages over the IGBT.

The aim is therefore to suppress oscillations caused by fault conditions and to protect the IGBT 

during turn-off. This can be achieved by timing the turn-off o f the IGBT and using over-voltage 

snubbers.
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IGBT timing

The fact that the initial C-C transfer after the IGBT switches is unchanged by a laser fault condition 

can be used to time the turn-off of the IGBT. After the initial C-C transfer pulse the IGBT current 

drops to zero or close to zero and at this point the IGBT can be turned off. This prevents any further 

oscillations through the IGBT. Under fault conditions it can also happen that the IGBT current 

reverses after the initial C-C transfer, thereby forward biasing the internal diode of the IGBT 

module. Under such conditions it is also perfectly safe to turn the IGBT off, because at that stage 

the diode and not the IGBT is conducting.

Another advantage of switching the IGBT on only for the duration of the C-C transfer is that 

automatic energy recovery can be obtained. Note that the diode conducts reverse currents and in 

case of a fault condition the diode will only conduct the reverse portions of the fault current 

oscillations. This effectively recharges the input storage capacitor and is illustrated by measured 

waveforms in Section 6.2.3.

Over-voltage snubber

As mentioned earlier, an over-voltage spike is obtained when the IGBT switches off while current is 

still flowing through the IGBT. Over-voltage spikes can also be obtained when the diode switches 

off, due to the reverse recovery currents during the turn-off transient of the diode [27], It is 

important to provide an over-voltage snubber [27], which clamps the IGBT voltage during turn-off 

of both the diode and IGBT. The circuit diagram of an over-voltage snubber is shown in 

Figure 6-11.

Over-voltage snubber

Figure 6-11: Circuit diagram of an over-voltage snubber.
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Initially, the IGBT is off and the snubber capacitor Cs is charged by the high-voltage charging 

supply to a voltage equal to the initial voltage drop V/ over the IGBT. When the IGBT is turned on, 

the snubber diode D s prevents the snubber capacitor from discharging through the IGBT, which 

could otherwise result in very large currents. At turn-off the IGBT voltage increases until the 

snubber diode is forward biased and the IGBT voltage vce is equal to the voltage over the snubber 

capacitor (ignoring the voltage drop of the snubber diode; see Figure 6 -12a). At this point the 

inductor current is transferred from the IGBT to the snubber capacitor. The energy stored in the 

transfer inductor Lt is deposited into the snubber capacitor. The voltage over the snubber capacitor 

is thereby increased.

Lt

CO-L

IGBT

Lt
-nswrv

Cs <  Rb

a) b)

Figure 6-12: Over-voltage snubber behaviour.

Once the inductor current has been transferred to the snubber capacitor, the snubber diode becomes 

reverse biased. The over-voltage on the snubber capacitor discharges through the bleeding resistor 

Rb as shown in Figure 6-12b until the initial charging voltage Vt is reached again. Using energy 

considerations and assuming that the snubber capacitor is not significantly discharged during the 

turn-on period of the IGBT, the following expression is obtained:

a  VCB = -  K , (6.3)

where A Vce is the increase in voltage over the IGBT beyond the initial voltage drop V, and Io is the 

current through the IGBT and transfer inductor at turn-off. Ideally, the voltage across the IGBT 

should not exceed 80% of the rated voltage [17]. The bleeding resistor has to discharge the 

capacitor to V,,■ before the next pulse is generated. Assuming that tS.Vce <<c V  the following must
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hold true:

RbC < ----- ------ , (6.4)
6 '  / repAFC£

with / rep the repetition frequency of the generated pulses. It is interesting to note, that for series- 

stacked IGBTs the bleeding resistors also act as a voltage divider network. This ensures equal 

voltage sharing between the stacked IGBTs during the off-state (see Chapter 3). Furthermore, the 

over-voltage snubber acts as an additional failsafe to ensure equal voltage sharing between stacked 

IGBTs during the turn-on and turn-off transients. An additional safety feature is to add a transient 

suppressor diode, avalanche diode or varistor parallel to the snubber capacitor to clamp the 

maximum capacitor voltage below the breakdown voltage of the IGBT. The final circuit diagram of 

the snubber is shown in Appendix B.

6.2.3 IGBT lifetime under fault conditions

The protection scheme, i.e. IGBT timing and the over-voltage snubber, discussed in the previous 

sub-section was tested by using the same test circuit shown in Figure 6-1. A fault condition is 

simulated by removing the damping resistor and allowing the weakly damped LC-circuit to oscillate 

through the IGBT after turn-on. A similar current waveform as shown in Figure 6-10 is obtained. 

An additional IGBT timing unit was implemented. The timing unit switches the IGBT on only for 

the duration of the initial C-C transfer as discussed previously. A circuit diagram of the timing unit 

is given in Appendix B. The experimental set-up for testing the IGBT lifetime under simulated fault 

conditions is shown in Figure 6-13 and the circuit values are summarized in Table 6-4.

High Voltage

Figure 6-13: Experimental set-up for IGBT lifetime testing under fault conditions.
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R < 0 . 1  Q

L 1.13 pH

C 1.65 pF

Table 6-4: Circuit values for test set-up to simulate fault conditions.

The circuit diagram of the over-voltage snubber is also shown in Appendix B. A 0.47 p,F / 2000 V 

snubber capacitor is used, which for the circuit values in Table 6-4 and for a charging voltage of 

1200 V will be able to absorb a maximum current of 400 A during turn-off without causing an over­

voltage (< 80% of the rated IGBT voltage) across the IGBT.

The waveforms obtained with the test set-up for the case when no snubber is used and for the case 

when an over-voltage snubber is used are shown in Figures 6-14 and 6-15, respectively. Normally, 

the weakly damped LC circuit would continue oscillating freely after the IGBT is turned on. As can 

be seen in both Figures 6-14 and 6-15 the IGBT is timed and is only turned on by the gate voltage 

for the duration of the positive current pulse. The positive current pulse is equivalent to the initial 

current pulse obtained in a C-C transfer of the pulsed power supply. The negative half o f the LC 

current oscillation is conducted through the internal diode o f the IGBT module. This negative half 

cycle also mimics the reflected current pulses obtained under a laser fault conditions, i.e. when no 

laser discharge is obtained (see Figure 6-10). At the end of the negative current pulse the current 

through the diode reverses and the diode becomes reverse biased. However, the diode does not 

immediately turn off and for a short period a reverse recovery current is obtained before the diode 

finally tums-off resulting in a relatively large di/dt [27]. As can be seen in Figures 6-14 and 6-15 

the reverse recovery current at the point when the diode turns off can be significantly high (in this 

case approximately 300 A) and causes large voltages across the IGBT during the diode turn-off. For 

the snubberless operation (see Figure 6-14) the over-voltages induced by the diode turn-off can be 

clearly seen. On the other hand, when using an over-voltage snubber the voltage across the IGBT is 

clamped and no over-voltages are obtained.

145

Stellenbosch University http://scholar.sun.ac.za/



T im e [us]

Figure 6-14: Waveforms obtained under mimicked fault conditions with IGBT timing, but without 
snubber.

T im e [|is]

Figure 6-15: Waveforms obtained under mimicked fault conditions with IGBT timing and over­
voltage snubber.

The lifetime of the IGBT was tested for both cases, i.e. with and without snubber and the results are 

summarized in Table 6-5.
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Snubber Number of shots Failure

IGBT #1 No 1 0 0 , 0 0 0 Short-circuit

IGBT #2 Over-voltage 25,000,000 Short-circuit

IGBT #3 Over-voltage 36,000,000 Short-circuit

Table 6-5: Results of lifetime tests under fault conditions.

In all cases a short-circuit failure of the IGBT module was obtained, but a clear improvement in the 

lifetime can be seen for the cases where an over-voltage snubber was used. Although all the tested 

IGBTs failed, it is important to realize that the test conditions were very stringent. The negative 

current pulses conducted through the internal diode of the IGBT module are larger than would 

normally be obtained in a pulsed power supply (see measurements in Chapter 7). Furthermore, the 

test conditions mimicked current waveforms that would normally be obtained when the laser fails to 

discharge, which is the worst laser fault condition. However, it is possible to prevent this type of 

laser fault. Normally, the laser fails to discharge when the laser gas pressure is too high or the 

charging voltage of the primary switching unit is too low. It is possible to measure the gas pressure 

and charging voltage thereby disabling the pulsed power supply if either the gas pressure is too high 

or the charging voltage too low. The light emitted from the laser discharge can also be monitored 

and absence of discharges as well as arcing can be detected.

It is interesting to note that G-to-E tests (see Section 6.1.2) were performed on the failed devices 

and the test yielded satisfactory results, indicating that the IGBTs were still functional. The short- 

circuit failure of the IGBT modules can therefore most probably be blamed on the internal diode of 

the IGBT modules.

6.2.4 Conclusion

A clear improvement in the IGBT lifetime under fault conditions can be obtained when using over­

voltage snubbers and timing the IGBT turn-on. Although all the IGBTs failed during the fault 

lifetime testing, it is important to realize that the test conditions were very stringent. In a pulsed 

power supply the most common fault condition is laser arcing, which is much less severe than the 

applied test conditions.
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It seems as if the internal reverse diode of the IGBT module caused the IGBT module failure. The 

probable reason for this is that IGBT manufacturers use soft recovery diodes. Soft recovery diodes 

turn off more slowly than fast recovery diodes, thereby reducing the dz/d? of the diode current 

during turn-off. The aim of this behaviour is to reduce over-voltages and to allow snubberless 

operation in switch mode power supplies, but due to the soft diode recovery the diode losses are 

increased [17]. Furthermore, the internal diodes of IGBT modules normally have a smaller current 

rating and transient thermal impedance than the IGBTs (see data sheets in Appendix C). 

Consequently, in pulsed power supplies the soft recovery of the internal diode together with large 

reverse recovery currents obtained under fault conditions can cause excessively large diode losses 

resulting in diode failure. To improve the reliability of the IGBT module in pulsed power 

applications it is advisable to use an IGBT module without internal diode and adding an external 

reverse diode. The ratings of the external diode can be chosen to suit the conditions encountered in 

laser pulsed power supplies.

6.3 Electromagnetic interference (EMI)

Electromagnetic interference (EMI) can also result in unpredictable behaviour. As discussed in 

Chapter 5, for this project two series-stacked IGBTs are used, each with a separate driver unit. It 

was found that EMI from the laser head sometimes latched the driver unit of one of the two stacked 

IGBTs. This caused only one of the two IGBTs to switch resulting in an over-voltage across the 

non-switched IGBT, resulting in the over-voltage failure of the IGBT module. It is therefore 

important to reduce EMI and also make the system less vulnerable to EMI. The following 

precautions can be taken to reduce the effect of EMI:

■ Shielding of the IGBT driver units.

■ Driving stacked IGBTs with a single driver unit through small isolating pulse transformers. 

If the driver unit latches all the IGBTs will be disabled thereby preventing only one of the 

stacked IGBTs to switch.

■ A gap between the oil tank containing the MPC unit and the metal housing of the laser head 

will result in electromagnetic radiation being radiated from the laser discharge (Figure 6 - 

16a). It was found that EMI can be significantly reduced by electrically connecting the oil
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tank and the laser head housing, thereby shielding the radiation emitted from the laser 

discharge (Figure 6-16b).

a) b)

Figure 6-16: Shielding of laser head and MPC unit.
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Chapter 7

Pulsed power supply measurements

Finally, after completing the construction of the pulsed power supply, the complete assembled 

pulsed power supply was mounted on the laser head. In this chapter the measurements of the 

performance and behaviour of the pulsed power supply are presented. Measurements include the 

pulse current and voltage waveforms, stable operating region, transfer efficiency, optical output 

energy and total efficiency. The CO2 TEA laser was also originally supplied together with a 

thyratron-based pulsed power supply. Hence, it is possible to also compare the efficiency and 

optical output energy of the laser for the original thyratron-based and the new solid-state-based 

pulsed power supplies.

7.1 Voltage and current waveforms

The general circuit behaviour of the primary switching and MPC units were measured for both 

normal operating conditions (stable laser discharges and no circuit errors) and for laser fault 

conditions (arcing and absence of laser discharges). Furthermore, the IGBT turn-on and turn-off 

transients were measured with special focus on the voltage sharing between the two series-stacked 

IGBTs that were used for this design. The transfer efficiencies of the MPC stages were also 

measured.
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7.1.1 Normal operating conditions

The voltage and switching current waveforms of the pulsed power supply under normal operating 

conditions and at the rated charging voltage of Vo = 2420 V (see Chapter 5) are shown in 

Figure 7-1.
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Figure 7-1: Voltage and current waveforms of the primary switching unit under normal operating 
conditions.

As expected, as soon as a positive gate voltage above the IGBT threshold voltage is applied, the 

IGBT turns on and the collector-emitter voltage of the IGBT drops to approximately zero. A single 

positive current pulse is obtained due to the C-C transfer in the primary switching unit. The absence 

of any further IGBT currents after the transfer pulse is an indication that no energy is reflected back 

to the primary switching unit and that the system is well matched to the laser discharge with 

efficient energy transfer into the laser discharge.

The voltage waveforms of the MPC unit under normal rated conditions are shown in Figure 7-2. 

The voltages at the input of the two MPC stages, as well as the output of the last MPC stage are 

shown. The MPC unit is well timed and the voltage waveforms obtained closely resemble the 

simulated waveforms in Chapter 5. Compared to voltage waveforms measured in Chapter 4 (see 

Figure 4-10) there are less oscillations in the excitation (output) voltage after the discharge is
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obtained. The reverse overshoot voltage is also smaller, indicating good energy transfer into the 

laser discharge, thereby minimizing the remaining energy on the peaking capacitors. Note that due 

to a smaller peaking capacitor size, the leakage current of the saturable inductor in the last MPC 

causes a notable increase in the output (discharge) voltage before the main excitation pulse is 

obtained.

Time [|is]

Figure 7-2: Voltage waveforms of the MPC unit under normal operating conditions.

From the waveforms shown in Figure 7-2 the transfer efficiency o f the primary switching unit and 

the first MPC stage can be determined. Since the MPC inductors saturate before the voltages across 

the input capacitors of the MPC stages reach a maximum, a fit of Equation 2.6 has to be made onto 

the rising edge of the measured voltage waveforms. By extrapolating the fitted curve the maximum 

voltage that would be obtained across the input capacitors of the corresponding MPC stage can be 

determined. The curve fitting of Equation 2.6 to the measured waveforms was performed with 

MATLAB and the results are summarized in Table 7-1. Due to the reduction of the peaking 

capacitor size (output capacitor of second MPC stage) it is not possible to determine the transfer 

efficiency of the second MPC stage. The obtained transfer efficiencies are satisfactory with a 

transfer efficiency of 95.9 % for the primary switching unit including the pulse transformer 

and 95.5 % for the 1st MPC stage.
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Description capacitor Max. voltage Peak energy

Input storage capacitor Co = 1.65 pF 2420 V 4.84 J

Transfer efficiency of primary switching loop (Co to Ci) = 95.9 ± 0.2 %

Input capacitor of 1. MPC stage Ci = 10.8 nF 29300± 100V 4.64 ± 0.03 J

Transfer efficiency of 1. MPC stage (Ci to C2 ) = 95.5 ± 0.2 %

Input capacitor of 2. MPC stage C2 = 11.3 nF 28000± 1 0 0 V 4.43 ± 0.03 J

Table 7-1: Transfer efficiencies of primary switching unit and 1st MPC stage.

A close-up of the excitation voltage pulse is shown in Figure 7-3. The discharge pulse consists of 

the initial voltage rise after which the laser discharge is initiated followed by a second smaller 

voltage pulse. This is the typical behaviour that was also observed in Chapter 4 for reduced peaking 

capacitor sizes. Improved energy transfer into the laser discharge, coupled with an increase in 

optical output energy and efficiency is achieved. The observed waveform in Figure 7-3 is a very 

satisfactory result, indicating that the principle of reducing the peaking capacitor size can also be 

successfully implemented in the final MPC stage of a pulsed power supply. As expected, the initial 

rise-time of the excitation pulse is ^se = 80 ± 5 ns. The main discharge is preceded by the parallel 

pre-ionisation discharge by approximately 1 0  ns.

Time [ns]

Figure 7-3: Output (laser excitation) voltage waveform.
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In order to compare the simulated excitation waveform in Chapter 5 (see Section 5.1.4) the 

measured and simulated output voltage waveforms of the excitation circuit are shown in Figure 7-4. 

The simulation was performed for a 1:1:8 gas mixture at a laser gas pressure o f 1 bar. The 

measurements were performed for the same gas mixture and pressure. A relatively good agreement 

between the simulated and measured results is found. The breakdown voltage is very similar for 

both the measured and simulated traces. However, during the secondary discharge (between 200 

and 500 ns) the simulated waveform deviates from the measured trace. This is most probably 

caused by more complex processes in the laser discharge, which are not accurately modelled by the 

physical discharge model. Furthermore, the discharge model used for this simulation also 

approximates some of the discharge processes (see Appendix A). Nonetheless, the simulated 

waveform can be used as a comparatively good prediction of the general discharge behaviour of the 

laser.

Time [ns]

Figure 7-4: Comparison of the simulated and measured output voltage waveforms.

7.1.2 Fault conditions

The behaviour of the pulsed power supply for the two laser fault conditions, i.e. laser arcing and 

absence o f laser discharge, was measured and is discussed in the following sub-sections.
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No laser discharge

In order to measure the behaviour of the excitation circuit in the absence of a laser discharge, the 

laser gas pressure was increased and the charging voltage was reduced below the voltage needed to 

initiate a laser discharge. The IGBT was switched on longer than 1 ms in order to observe the 

circuit behaviour without IGBT timing as discussed in Chapter 6 . The IGBT voltage and current 

waveforms obtained are shown in Figure 7-5. As simulated in Chapter 6 , the initial C-C transfer 

current pulse is obtained followed by oscillations caused by the pulse energy being reflected from 

the power supply output. The duration of the circuit oscillations is remarkably long, lasting for more 

than 80 (is.

Time [|is]

Figure 7-5: IGBT current and voltage waveforms in the absence of a laser discharge.

The IGBT voltage and current waveforms with IGBT timing and over-voltage snubber (see 

Section 6.2.2) is shown in Figure 7-6. The IGBT is only switched on for the duration of the initial 

C-C transfer pulse and is switched off just after the C-C transfer is completed. As discussed in 

Chapter 6  it is safe to turn the IGBT off, because at that stage the current is flowing through the 

internal diode o f the IGBT module. In comparison to Figure 7-5 the amount o f circuit oscillations is 

significantly reduced and the oscillations are totally suppressed after less than 20 (as. The voltage 

spike caused by the reverse recovery current and turn-off of the diode is absorbed by the over­

voltage snubber. Reverse (reflected) currents pass through the internal diode of the IGBT module, 

thereby recharging the input storage capacitor of the primary switching unit and partially recovering 

the reflected pulse energy.
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Time [ps]

Figure 7-6: IGBT current and voltage waveforms in the absence of a laser discharge with IGBT 
timing and over-voltage snubber.

Laser arcing

Laser arcing was easily obtained by adding a small amount (approx. 20 mbar) of normal air to the 

laser gas. The IGBT voltage and current waveforms with IGBT timing and over-voltage snubber are 

shown in Figure 7-7.

>
CJQ£3

35O

Time [jxs]

Figure 7-7: IGBT current and voltage waveforms in case of laser arcing with IGBT timing and 
over-voltage snubber.
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The waveforms are similar to those obtained in Figure 7-6, but the amplitude of the reflected 

current is much smaller, because a large portion of the pulse energy is dissipated in the arc 

discharge. The obtained waveforms therefore illustrate that arcing fault conditions are less severe 

than absent discharges.

7.1.3 IGBT voltage sharing

Good voltage sharing between the two series-stacked IGBTs was obtained during both the tum-on 

and turn-off transients. This can be verified by the two IGBT voltage waveforms shown in 

Figure 7-8, which are almost identical even under fault conditions (absence of laser discharge).

Time [|is]

Figure 7-8: IGBT voltage sharing during tum-on and turn-off under fault conditions.

The theoretical results obtained in Chapter 3 on voltage sharing during tum-on of IGBTs therefore 

seem to be valid and give a good prediction of the behaviour of IGBTs in C-C transfer circuits. The 

turn-off transient is also satisfactory.

7.1.4 Conclusion

The designed MPC unit works satisfactorily with good transfer efficiency and timing. The improved 

energy transfer into the laser discharge due to the reduction of the peaking capacitor size also 

proves to be possible in the final MPC stage.
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The measured circuit behaviour during laser fault conditions shows that excessive circuit 

oscillations can be obtained. These oscillations can be suppressed by using IGBT timing and an 

over-voltage snubber as described in Chapter 6 . Measurements also show that the circuit 

oscillations obtained in the absence of a laser discharge are more severe than in case o f laser arcing.

Lastly, satisfactory voltage sharing between the two series stacked IGBTs is obtained during both 

the turn-on and turn-off transient of the IGBT.

7.2 Stability

The stability of the laser was determined with a 1:1:3 (C0 2 :N2 :He) gas mixture. Stable discharges 

were obtained for primary switching unit charging voltages larger than 1500 V and for the pressure 

range of 0.8 to 1.1 bar. The laser tended to be less stable at higher pressures, which can be expected 

with a 1:1:3 gas mixture. Notably, it was found that with parallel pre-ionisation the pre-ionisation 

discharge tended to fire too late. This caused the laser to operate on the brink o f stability. For better 

discharge stability it is therefore advisable to convert the laser to series pre-ionisation.

7.3 Output energy and efficiency

The optical output energy was measured as a function of the input energy, regulated by the charging 

voltage of the initial storage capacitor of the primary switching unit, and the laser gas pressure. The 

optical output energies and efficiencies are shown in Figures 7-9 and 7-10. The efficiency was 

calculated with respect to the initial stored energy in the primary switching unit. Therefore, the 

same equation as used for the measurements in Chapter 4 can be applied:

E IFoutput output

^ E C V 2 ’stored ^ 0 0

with Output the optical output energy, V0 the charging voltage and Co the input storage capacitor of 

the primary switching unit. A 1:1:3 (N2 :C0 2 :He) laser gas mixture was used for the measurements. 

A peak output energy of approximately 125 mJ is obtained at the rated input energy of 4.9 J. 

Unexpectedly, the peak energy output is obtained at the minimum laser gas pressure and the output
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energy decreases with an increase in laser gas pressure. The efficiency of the laser varies between 

1.7 % and 2.7 %, with the peak efficiency of 2.7 % at the rated input energy (4.9 J) and at the 

lowest pressure (0 . 8  bar).
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Figure 7-9: Optical output energy vs. input energy and laser gas pressure with new solid-state 
pulsed power supply. (1:1:3 mixture)
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Figure 7-10: Optical output energy vs. input energy and laser gas pressure with new solid-state 
pulsed power supply. (1:1:3 mixture)
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After the measurements conducted in Chapter 4 and during the construction phase of the new solid- 

state pulsed power supply, irreversible changes have been made to the CO2 laser. This includes 

changes in the laser optics and the insertion of a ceramic catalyst into the laser cavity. The changes 

in the laser resulted in a general decrease of the laser performance. Furthermore, the original 

commercial thyratron-based pulser was disassembled in order to build the experimental excitation 

circuit discussed in Chapter 4. This makes a direct comparison of the performance of the new solid- 

state pulser and the original commercial thryatron based pulser impossible.

However, the performance of the altered laser was again measured with the optimised experimental 

excitation circuit (see Chapter 4, Cp = V3 Cs, Cs = 11.04 nF and Lt = 920 nH) before employing the 

new solid-state pulser. In Figures 7-11 and 7-12 the output energy and efficiency of the laser for the 

experimental pulser and the new solid-state pulser are shown. Measurements were performed for a 

1:1:3 (N2 :CC>2 :He) gas mixture at a pressure of 0.9 and 1.0 bar. Note, that the output energy and 

efficiency obtained with the experimental pulser also dropped with an increase in laser gas pressure. 

This behaviour can therefore not be blamed on the use of the new solid-state pulser. In comparison 

to the measurements in Chapter 4 the performance of the laser has clearly decreased.

Nonetheless, in general the output energy and efficiency obtained with the experimental and new 

solid-state pulser compare well. The output energy and efficiency of the solid-state power supply 

are between 10% and 20% lower than for the optimised experimental excitation circuit. Compared 

to the experimental excitation circuit the performance of the solid-state pulser is worse for lower 

input energies than for higher input energies. This is caused by mismatches in the MPC unit at 

lower input energies, since the MPC unit is specifically designed for a given input energy and pulse 

voltage. At the rated input energy of 4.8 J a decrease of approximately 10% is obtained in the output 

performance of the solid-state pulser compared to the experimental pulser. This can be caused by 

increased losses obtained in the MPC unit of the solid-state power supply. The total losses in the 

MPC unit at the rated input energy were measured to be approximately 10% (see Table 7-1). This 

correlates well with the comparative decrease in output energy and efficiency o f the solid-state 

pulser.
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Input energy [J]

Figure 7-11: Optical output energy vs. input energy for the optimised experimental and new solid- 
state pulser. (1:1:3 mixture)

Input energy [J]

Figure 7-12: Efficiency vs. input energy for the optimised experimental and new solid-state 
pulser. (1:1:3 mixture)
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7.3.1 Conclusion

Unfortunately, irreversible changes have been made to the laser, which resulted in a general 

decrease of the laser performance. Although this makes a direct comparison between the original 

thyratron-based pulsed power supply with the new solid-state pulser impossible, good results have 

been obtained with the solid-state pulser. Up to 125 mJ optical output energy with an efficiency of 

2.7% were obtained. This is only 10% below the results obtained with the optimised experimental 

excitation circuit, as used in Chapter 4.

It is however still advisable to conduct comparative output energy measurements with both the 

original thyratron and new solid-state pulser on the same laser under closely matched conditions. 

Furthermore, it will be interesting to investigate the changes that were made to the laser (e.g. 

insertion of catalyst), which ultimately led to the degradation in laser performance.
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Chapter 8

Conclusion

8.1 IGBTs in laser pulsed power supplies

The increased switching speeds and easy gate control of IGBTs can be used very effectively in 

pulsed power supplies based on a C-C transfer topology. It is therefore possible to switch pulses 

with pulse energies of a few Joules and with pulse durations o f a few microseconds without 

magnetic assist. The problem of latch-up [27] during tum-on caused by large di/dt in the switching 

current is also eliminated in the new generation of IGBTs.

The limitations in the minimum switchable pulse width is caused by the following factors:

■ For a given pulse energy and switching voltage the peak pulse current is inversely 

proportional to the pulse width of the switched pulse (see Equation 2.17). Too large peak 

pulse currents can saturate the IGBT, thereby causing the IGBT to effectively turn off. This 

results in an increase in the IGBT voltage coupled with large dissipative losses.

■ The initial increase, di/dt, in the switch current has to be below a certain threshold 

determined by the switching speed o f the IGBT. Too large di/dt in the switch current during 

the tum-on o f the IGBT will prevent the IGBT from completely switching on. For C-C 

transfers a criteria for the minimum transfer time was derived for which satisfactory IGBT 

tum-on can be achieved (see Equations 3.20 and 3.21).
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■ The thermal stresses introduced by switching short high-current pulses can cause long-term 

degradation of the device thereby limiting the lifetime of the IGBT.

It is possible to reduce the above-mentioned limitations by either stacking or paralleling of IGBTs. 

With series-stacked IGBTs larger voltages can be switched, which leads to a reduction of the 

switching current. With parallel IGBTs the pulse current can be shared between IGBTs. Although 

the latter is more robust, the reduced switching current obtained with series-stacked IGBTs is 

beneficial and will also reduce the step-up pulse transformer current rating. It is found that excellent 

voltage sharing between series stacked IGBTs is obtained when using the criteria (Equations 3.20 

and 3.21) mentioned earlier. IGBT switching speeds much faster than the transfer time of the 

switched C-C transfer loop will result in decoupling of the IGBTs, allowing each device to 

individually turn-off without effecting other series connected IGBTs.

The increased gate control, i.e. the ability to turn the IGBT on and off by the gate voltage, can be 

used very effectively to handle laser fault conditions. The laser fault conditions include laser arcing 

and the absence o f laser discharges. A switching scheme is proposed with which oscillations in the 

pulsed power supply, caused by laser fault conditions, can be suppressed:

■ The IGBT is timed to only turn on for the duration of the switched pulse. By turning off the 

IGBT after the transfer of the pulse any further oscillations in the pulsed power supply can 

be suppressed.

■ Together with the above IGBT timing an over-voltage snubbers have to be used to protect 

the IGBT during turn-off against over voltages induced by the C-C transfer inductance.

8.2 IGBT peak current rating, lifetime and reliability

Costs can be reduced if the average current rating of the IGBT can be less than the peak switched 

pulse current. The same limitations that apply to the minimum pulse width, discussed earlier, also 

apply to peak switchable pulse current. It is found that the peak current o f the IGBT in general 

should not exceed 4 to 5 times the rated average current of the device. Larger peak pulse current 

will result in saturation of the device, thereby inducing large losses. Lifetime tests show that it is 

possible to switch short pulses with peak currents between 4 to 5 times the rated average current of 

the IGBT reliably and for extended periods o f time.
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The reliability of IGBTs under fault conditions can be significantly improved by using the proposed 

switching scheme and over-voltage snubbers. The reliability of IGBT modules under fault 

conditions, however, can pose a problem. It seems that the internal soft-recovery diodes supplied in 

IGBT modules are a weak point. Lifetime tests under fault conditions revealed that the diodes 

eventually fail, resulting in a short-circuit across the IGBT module. Reliability can most probably 

be increased by using IGBTs without internal diodes and adding a separate external diode that is 

better suited for the conditions encountered in laser pulsed power supplies. Furthermore, it was 

found that the absence of a laser discharge is a much more severe laser fault condition compared to 

laser arcing, resulting in excessive oscillations in the pulsed power supply. It is therefore advisable 

to prevent situations that cause the laser not to discharge (e.g. excitation voltage too low, gas 

pressure too high, etc.). Additional circuitry has to be implemented that will shut down the laser 

under the prevalence of laser fault conditions. The additional circuitry should at least include an arc 

detector that can detect normal discharges, arc discharges and also the absence of discharges.

The problem of EMI must be addressed especially for series stacked IGBTs. It is found that the 

commercially available gate driver circuits for IGBTs can be latched by the EMI emitted from the 

MPC unit and laser discharge. Therefore, in series-stacked IGBTs where each IGBT is driven by a 

separate gate driver, EMI can result in over-voltage failure of the IGBT for which the gate drive 

circuit is latched. Reliability can be increased by using a single gate driver circuit. The single gate 

drive circuit then drives the series stacked IGBTs through small pulse transformers. Additionally, 

the laser cavity and MPC unit must be enclosed and well shielded, preventing the emission of EMI 

reaching the IGBTs and IGBT driver circuits.

8.3 MPC unit construction

A new approach in the MPC unit layout was used, which results in a more compact design. Instead 

of using a coaxial layout for the MPC inductors and capacitors a compact rectangular layout has 

been used. The capacitor banks and saturable inductors are modular and pre-assembled, thereby 

simplifying the final assembly of the MPC unit.
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8.4 Optimisation of a mini C 0 2 TEA laser

A simple thyratron-switched C-C transfer circuit was used to characterize a mini CO2 TEA laser. 

For the C-C transfer based laser pulsed power supply the transfer capacitors of the MPC unit are 

chosen more or less equal in order to maximize the transfer efficiency of the MPC unit (see 

Euqation 2.15). However, it is found that the output energy and efficiency of the laser can be 

increased significantly by reducing the peaking capacitor (output capacitor of last MPC stage) size. 

An increase of up-to 35 % (1:1:8 gas mixture) in the laser output energy and efficiency was 

observed by decreasing the peaking capacitor to a third of its original size. The improved efficiency 

is obtained due to a better transfer efficiency of the electric pulse energy into the laser discharge. 

The transfer inductance should not be increased when reducing the peaking capacitor size. 

Increased transfer inductance leads to decreased discharge stability. Therefore, associated with the 

smaller peaking capacitor size a faster voltage rise-time over the laser electrodes is obtained 

resulting in improved discharge stability.

Series pre-ionisation showed better discharge stability margins than parallel pre-ionisation, due to 

better timing and less jitter of the pre-ionisation discharge with respect to the main laser discharge. 

However, parallel pre-ionisation is preferable, because of the possible excessive erosion of the pre­

ionisation spark gap encountered with series pre-ionisation. Furthermore, stable discharges can be 

obtained with maximum electrode voltage rise-times of up to 180 ns (approx. 300 ns C-C transfer 

time), but the discharge is less tolerant to the formation of O2 , resulting in a drop in laser output 

energy. Better discharge stabilities are obtained with voltage rise-times of less than 120 ns (200 ns 

C-C transfer time).

Since the measurements conducted in Chapter 4, changes have been made to the laser (e.g. insertion 

of a catalyst, changes to the laser optics, etc). These changes caused a general decrease in the laser 

performance. The decrease in laser performance was already measured with the experimental 

excitation circuit discussed in Chapter 4. Unfortunately, the changes are irreversible. A direct 

comparison of the performance of the new solid-state and original commercial thyratron-based 

pulsers is not possible. However, measurements conducted with the experimental excitation circuit 

on the altered laser compared favourably with results obtained with the solid-state power supply.
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8.5 Future work

To improve laser efficiency and energy output it is advisable to investigate different excitation 

topologies, including the pre-pulse-main-pulse (magnetic spiker) topologies [3] [9] [19] [22] [46], in 

conjunction with solid-state switches. The advantage of magnetic spiker excitation is the reduction 

of the solid-state switch ratings compared to other topologies.

The reliability of the internal reverse diode in IGBT modules has to be investigated in more detail in 

order to improve the reliability of the IGBT under fault conditions. Safeguards must also be 

developed to detect the occurrence of laser fault conditions, especially the absence of laser 

discharges. Under potentially harmful fault conditions the pulsed power supply can be disabled.

Paralleling of IGBTs can be investigated in order to determine the advantages and disadvantages 

compared to series stacking of IGBTs.
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Appendix A

PSpice simulation models

The simulation of circuits is an important design step with which possible design errors can be 

identified and basic circuit behaviour can be analysed. Saturable inductors and high pressure laser 

discharges are not standard circuit components available in PSpice. In order to simulate pulsed 

power supplies, models for a saturable inductor and laser discharge have to be implemented and are 

discussed in more detail in the following two sections.

A.l Saturable inductor model

In order to model saturable inductors, PSpice must be able to model the BH-curve of an inductor or 

transformer core. A model often used in this respect is the Jiles-Atherton model [38] for non-linear 

cores. A summary of the model parameters is given in Table A -l.

Parameter Units Description
AREA, (AC) cm2 Mean of magnetic core cross section. AC is an alias o f AREA
PATH, (LC) cm Mean of magnetic core path length. LC is an alias of PATH
MS amp/meter Magnetization saturation
A amp/meter Characterizes the shape o f the anhysteretic magnetization
ALPHA Represents the coupling between the magnetic domains
C Domain flexing parameter
K amp/meter Domain anisotropy parameter

Table A -l: Parameters of the Jiles-Atherton core model.
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A.2 Discharge model of a high-pressure C 0 2 laser

Circuit simulations with PSpice can be used very effectively to optimise laser pulse power supplies. 

It is therefore advantageous to include the laser discharge in circuit simulations in order to 

determine the circuit response with a laser as electric load. The laser discharge can be either 

modelled by an equivalent circuit model [30] or by modelling the physical discharge process [25], 

The physical model tends to give better results with less of a trial-and-error-approach in comparison 

to the equivalent circuit model. Therefore in this section only the physical discharge model is 

discussed.

For simplicity the gas discharge is modelled as a homogenous positive column [25] and the electron 

balance equation becomes:

^ j -  = Wene{ a - t l ) - n ] y , (A.l)
at

where ne is the electron density, a  the ionisation coefficient, Tj the attachment coefficient, y  the 

recombination coefficient and We the electron drift velocity. Further, it is assumed that 

recombination is negligible. Equation A. 1 then reduces to a first order linear differential equation 

with the following solution:

«.(*) = neoeexp\ J(a -  rj)Vedt' (A.2)

where neo is the pre-ionisation charge density at t -  0. It is assumed that the discharge is 

homogeneous without electrode effects. The discharge current can be obtained by differentiating 

Equation A.2:

<
id (t) = eneWeA = eneoWeA cx p  J ( a  -  ij)Vedt'

vo
(A.3)

where id is the discharge current, A the discharge cross-section and e the electron discharge.
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Equation A.3 seems relatively simple, but the ionisation and attachment coefficients and the 

electron drift velocity are functions of the applied discharge voltage Vd, i.e. the voltage between the 

anode and cathode of the laser. The discharge current therefore depends on the applied voltage and 

in return the applied voltage is regulated by the external circuit elements and the discharge current. 

This results in a complex feedback system that can cause convergence problems during PSpice 

simulations.

The ionisation and attachment coefficients and electron drift velocity are normally expressed as 

functions of E/N, where

£ ( 0  = v . / ( 0  

N  Nd ’
(A.4)

and E  is the electric field between the laser electrodes, which is assumed to be homogeneous, N  is 

the neutral particle density and d  the distance between the electrodes of the laser. The E/N  

dependencies of the ionisation and attachment coefficients and the electron drift velocity for a 1 :1 : 8  

(C0 2 :N2 :He) gas mixture were taken from Lowke, et al. [23] and are shown in Figures A -l and A-2.

E/ N  [cm2]

Figure A -l: Ionisation and attachment 
coefficients as a function of E/N  in CO2 

TEA lasers with a 1:1:8 gas mixture.

E/ N  [cm2]

Figure A-2: Drift velocity as a function of 
E/N  in CO2 TEA lasers with a 1:1:8 gas 
mixture.

The dependence of the ionisation and attachment coefficients and drift velocity on the applied 

voltage vd (i.e. the E/N  value) is highly non-linear as apparent from Figures A -l and A-2. In order to
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obtain an acceptable curve fit, polynomial fits are done on the log-log values, which are shown in 

Figures A-3 and A-4. The curve fits as well as the fitting functions are shown in Figures A-l and 

A-2.
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Figure A-3: Polynomial fits of the attachment and ionisation coefficients vs. E / N .

log {a IN) = 5.841og3(£ W ) + 260.3 log2(£ W ) + 38641og(£W ) +19117

-19.00 -18.00 -17.00 -16.00 -15.00 -14.00

Log (BIN)

Figure A-4: Polynomial fit of the drift velocity vs. E/N.

Equations A.3 and A.4 can be implemented in PSPICE by several voltage sources and a voltage- 

dependent current source as depicted in Figure A-5. Firstly, the value of E/N  is calculated from the
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input voltage between the anode and cathode and is represented by the voltage source V(E/N). The 

three voltage sources, V(log_ion), V(log_att) and V(drift) represent the ionisation coefficient, 

attachment coefficient and drift velocity respectively, which are calculated from the voltage value 

of V(E/N) using the fitting functions shown in Figures A-3 and A-4. The voltage source V(dint), 

which calculates (a-rj)We, is integrated and V(int) represents the integral in Equation A-3. From the 

voltages V(int) and V(drift) the discharge current is calculated and implemented by the voltage 

controlled current source G l. The laser parameters neo, N, d  and A are given as input parameters.

.PARAM ETERS(neo-1 e8,N =3.18E+19,d=2,A =76)

Figure A-5: Implementation of the physical discharge model in PSpice.
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Appendix B

Circuit diagrams

B.l IGBT timing unit

The IGBT timing unit is based on the 555 timer chip which is operated in mono-stable mode. A 

trigger pulse fed in at the SGN terminal resets the timer. After this the output of the timer is driven 

high for a preset period of time, Ton. The period Ton can be adjusted by the potentiometer R 6 . The 

output of the 555 timer drives a fibre optic transmitter diode which is connected via a fibre optic 

cable to the fibre optic receiver on the IGBT driver unit. Therefore, by adjusting R 6  the turn-on 

period of the IGBT can be adjusted.

Figure B-l: Circuit diagram of IGBT timing unit.
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B.2 IGBT driver unit

The IGBT driver unit is based on the DC-DC converter M57145L-01 and gate driver M57962, both 

from Powerex. Two gate drivers are used, each driving one of the IGBTs in the SKM300GB174D 

IGBT module. The turn-on (control) signal is obtained via fibre optical cable. The unit is powered 

by an external DC voltage source (12 to 18V).

Figure B-2: Circuit diagram o f  IGBT driver unit.
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B.3 Current limiter

The current limiter is used to prevent short-circuiting of the charging supply. The circuit consists of 

four identical solid-state constant current sources with over-voltage protection. The current sources 

are connected in series. The current limiter can directly be connected between the charging supply 

and the input of the pulsed power supply. Each current source is constructed from a high-voltage 

1000V / 12A MOSFET and the current limiter can handle a maximum voltage of 4000 V. Each of 

the four MOSFETs, source resistors (R12, R22, R33 and R44) and zener diodes (D l, D2, D3 and 

D4) are connected in a typical constant current configuration [14]. The maximum current that can 

pass through the current limiter is set by the values of the emitter resistors and zener diodes. Even 

small differences in component values of the four current source stages can lead to an uneven 

voltage distribution across the four stages. Therefore, the bipolar transistors (T2, T3, T5 and T7) 

and JFET's (T l, T4, T6  and T 8 ) are used to protect the MOSFETs against over-voltages. If the 

voltage across a MOSFET reaches a certain maximum threshold the corresponding bipolar 

transistor will turn on, thereby turning off the corresponding JFET. This results in an increased gate 

voltage, turning on the MOSFET more strongly and decreasing the voltage across that MOSFET.

Figure B-3: Circuit diagram of solid-state current limiter.
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B.4 Over-voltage snubber

The complete over-voltage snubber circuit for two IGBTs, as discussed in Chapter 6 , is shown in 

Figure B-4. As additional safety feature, transient suppressor diodes (P1.5KE400A or 

P600KE400A) are used.

-E*07_________
nUR4100E -W-08______

HUR4100E

4 , 012S P6KEXXA

4 , 05$  P6KEXXA

4 . 062S P6KEXXA

Cl

u ,

i :n

n M
) N

r

-E*D9
HUR4100E

□ 10
nUR4100E

4 . 0125  P6KEXXA

4,  02 
t S  P6KEXXA

D3
2S P6KEXXA

C2

Figure B-4: Circuit diagram of over-voltage snubber.
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Appendix C

IGBT data sheets

On the following pages the data sheets of the SKM300GB174D from Semikron, which is a 

300A/1700V IGBT are given.
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SKM 300 GB 174 D SEMIKRON
Absolute Maximum Ratings Values
Symbol Conditions 1) Units

VcES 1700 V

VcGR Rge = 20 kQ 1700 V

lcl IcN Tcase = 25/80 °C 320 / 230 A
ICM Tcase = 25/80 °C; tp = 1 ms 640/460 A
V ges ±20 V

Plot per IG B T, T caSe = 25 °C 1800 W
Tj, (T stg) -40 ... +150(125) °C

AC, 1 min. 4> 3400 V
humidity IEC 60721-3-3 class 3K7/IE32
climate IEC 68 T.1 40/125/56
Inverse Diode 8)
Ip = - lc T case = 25/80 °C 390 / 260 A
Ifm  = -Icm TCase = 25/80 °C; tp = 1 ms 640 / 460 A
If s m tp = 10 ms; sin.; Tj = 150 °C 2200 A
l2t tp= 10 ms; Tj = 150 °C 24200 A2s

Characteristics
S y m b o l C o n d it io n s  1) m in . ty p . m a x . U n its

V(BR)CES V Ge = 0, lG = 6 mA ^  V ces - - V
VGE(th) V Ge ~ V cei lc = 9 mA 4,5 5,5 6,5 V
Ices VGE = 0 Tr, = 25 °C - 0,1 1 mA

VcE = V CE sJT j = 125 °C - 8 - mA
Iges VGe = 20 V, VCE = 0 - - 0,2 HA
VcEsat lc = 200 A  fV GE = 15 V; \ - 2,8(3,25) 3,3(3,8) V

lc = 300 A  \T ,  = 25 (125) °C J - 3,3(3,8) - V
9fs VCE = 20 V, lc = 200 A 80 110 - S

CcHC per IGBT - - 0,7 nF
Cjes v GE = o - 14 - nF
Coes -Vce = 25V - 2,0 - nF
Cres - f = 1 MHz - 0,6 - nF
Lce - - 20 nH

td(on) Vcc= 1200V - 100 - ns
tr Vge = -15 V / + 1 5 V 3> - 100 - ns
td(off) J c  = 200 A, ind. load - 900 - ns
tf RGon = RGoff = 6,8 i l - 150 - ns
Eon T, = 125 °C (Vcc = 900 V/1200 V) - 90/125 - mWs
^off Ls = 60 nH (Vcc = 900 V/1200 V) - 65/95 - mWs
Inverse Diode8)

oHI
>IIu_>

If = 200 A f  VGE = 0 V; \ - 2,15(1,9) 2,4(2,25) V

OLU>IIU.
>

If = 300 A \ T j  = 25 (125) °C J - 2,4(2,2) 2,75(2,5) V
Vjo Ti = 125 °C - 1,3 1,5 V
h T,=  125 °C - 3 4 m£2
Irrm If = 200 A; T, = 25 (125) °C2> - 100(200) - A
Qrr If = 200 A; Tj = 25 (125) °C2> - 24(50) - nc
Err If = 200 A; Tj = 25 (125) °C2> - 10(18) - mWs
Thermal characteristics

Rthjc per IGBT - - 0,07 °C/W
Rthjc per diode D - - 0,125 °C/W
Rthch per module (50 |im grease) - - 0,038 °C/W

SEMITRANS® M
Low Loss IGBT Modules

SKM 300 GB 174 D

SEMITRANS 3

J E  
j f

GB

Features
• N channel, homogeneous Silicon 

structure (NPT- Non punch- 
through IGBT)

• Low inductance case
• High short circuit capability, 

self limiting
■ Fast & soft inverse CAL diodes 8)
• Without hard mould
• Isolated copper baseplate using 

DCB Direct Copper Bonding
• Large clearance (13 mm) and 

creepage distances (20 mm)

Typical Applications
• AC inverter drives on mains 

575 - 750 VAC
• DC bus voltage 750 - 1200 VDc
• Public transport (auxiliary syst.)
• Switching (not for linear use)

1) T case = 25 °C, unless otherwise 
specified

2) |F = -  |c, VR = 1200 V,
-dip/dt = 2000 A/us, VGE = 0 V

3) Use V GEoff = -5 ... -15 V
4) Option VjS0| = 4000V/1 min add suffix

„H4“ - on request
8) CAL = Controlled Axial Lifetime

Technology

© by SEMIKRON 000828 B 6 -  67
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SKM 300 GB 174 D
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SKM 300 GB 174 D 5EMIKR0N

^  FIGUR7.XLS-V1 m300gb17.xls - 8

ICSĈCN 

8

6

4

2

0
10 VGE 12 14 16 18 V 20 ° T C20 40 60 80 100 120 140 °c160

Fig. 7 Short circuit current vs. turn-on gate voltage Fig. 8 Rated current vs. temperature lc = f (Tc)
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A

500

400

300

200

100 
•c

0

Fig. 9 Typ. output characteristic, tp = 250 ps; Tj = 25 °C Fig. 10 Typ. output characteristic, tp = 250 ps; Tj = 125 °C

Pcond(t) =  VcEsat(t) ' lc(t)

VcEsat(t) =  VcE(TO)(Tj) +  rCE(Tj) ‘ lc(t)

V C E(TO)(Tj) < 1,5 + 0,001 (Tj -25 ) [V]

typ: r C E (T j) = 0,0065 + 0,000018 (Tj -25 ) [Q] 

max: rCE(Tj) ^  0,0088 + 0,000023 (Tj -25 ) [ f l]  

valid for VGE < + 1 5 ^  [V]; lc > 0,3 lCnom

Fig. 11 Typ. saturation characteristic (IGBT)
Calculation elements and equations

Vce  1 2  3  4  5  v  6  0 V C 1 2  3  4  5 y 6

Vc = 1200 V 
lc = 200 A 
Rg > 7 Q  
Lext < 50 nH 
self-limiting
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Fig. 13 Typ. gate charge characteristic

0 |c 100 200 300 400 A 500

Fig. 15 Typ. switching times vs. Ic

o VF 1 2 3 v

Fig. 17 Typ. CAL diode forward characteristic

Fig. 14 Typ. capacitances v s .V Ce

Fig. 16 Typ. switching times vs. gate resistor RG

m300gb17.xls • 18

Fig. 18 Diode turn-off energy dissipation per pulse
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*n  S

Fig. 19 Transient thermal impedance of IGBT 
Zthjc = f (tP); D = tp/tc = tp • f

Fig. 22 Typ. CAL diode peak reverse recovery 
current lRR = f (lF; Rg)

0 diF/dt 3000 6000 9000 ^ 1 2 0 0 0

Fig. 24 Typ. CAL diode recovered charge

SEMIKRON

Fig. 20 Transient thermal impedance of
inverse CAL diodes Zthjc = f (tp); D = tp / tc = tp ■ f

Fig. 23 Typ. CAL diode peak reverse recovery 
current Ir r  = f (di/dt)
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SKM 300 GB 174 D

SEMITRANS 3 

Case D 56
UL Recognized 
File no. E 63 532

SKM 200 GB 174 D 

SKM 300 GB 174 D

02

Dimensions in mm

Case outline and circuit diagram

CASED56

Mechanical Data
Symbol Conditions Values Units

min. typ. max.
M, to heatsink, SI Units (M6) 3 — 5 Nm

to heatsink, US Units 27 - 44 Ib.in.
m2 for terminals, SI Units (M6) 2,5 - 5 Nm

for terminals, US Units 22 - 44 Ib.in.
a - - 5x9,81 m/s2
w - - 325 9

This is an electrostatic discharge 
sensitive device (ESDS).
Please observe the international 
standard IEC 747-1, Chapter IX.
Twelve devices are supplied in one 
SEMIBOX D without mounting hard­
ware, which can be ordered separa­
tely under Ident No. 33321100 
(for 10 SEMITRANS 3)

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or 
implied is made regarding delivery, performance or suitability.
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