26 research outputs found

    The Amygdala and Anxiety

    Get PDF
    The amygdala has a central role in anxiety responses to stressful and arousing situations. Pharmacological and lesion studies of the basolateral, central, and medial subdivisions of the amygdala have shown that their activation induces anxiogenic effects, while their inactivation produces anxiolytic effects. Many neurotransmitters and stress mediators acting at these amygdalar nuclei can modulate the behavioral expression of anxiety. These mediators may be released from different brain regions in response to different types of stressors. The amygdala is in close relationship with several brain regions within the brain circuitry that orchestrates the expression of anxiety. Recent developments in optogenetics have begun to unveil details on how these areas interact

    Restraint stress increases hemichannel activity in hippocampal glial cells and neurons

    Get PDF
    Stress affects brain areas involved in learning and emotional responses, which may contribute in the development of cognitive deficits associated with major depression. These effects have been linked to glial cell activation, glutamate release and changes in neuronal plasticity and survival including atrophy of hippocampal apical dendrites, loss of synapses and neuronal death. Under neuro-inflammatory conditions we recently unveiled a sequential activation of glial cells that release ATP and glutamate via hemichannels inducing neuronal death due to activation of neuronal NMDA/P2X7 receptors and pannexin1 hemichannels. In the present work, we studied if stress-induced glia activation is associated to changes in hemichannel activity. To this end, we compared hemichannel activity of brain cells after acute or chronic restraint stress in mice. Dye uptake experiments in hippocampal slices revealed that acute stress induces opening of both Cx43 and Panx1 hemichannels in astrocytes, which were further increased by chronic stress; whereas enhanced Panx1 hemichannel activity was detected in microglia and neurons after acute/chronic and chronic stress, respectively. Moreover, inhibition of NMDA/P2X7 receptors reduced the chronic stress-induced hemichannel opening, whereas blockade of Cx43 and Panx1 hemichannels fully reduced ATP and glutamate release in hippocampal slices from stressed mice. Thus, we propose that gliotransmitter release through hemichannels may participate in the pathogenesis of stress-associated psychiatric disorders and possibly depression

    A single dose of ketamine cannot prevent protracted stress-induced anhedonia and neuroinflammation in rats

    Get PDF
    Worldwide, millions of people suffer from treatment-resistant depression. Ketamine, a glutamatergic receptor antagonist, can have a rapid antidepressant effect even in treatment-resistant patients. A proposed mechanism for the antidepressant effect of ketamine is the reduction of neuroinflammation. To further explore this hypothesis, we investigated whether a single dose of ketamine can modulate protracted neuroinflammation in a repeated social defeat (RSD) stress rat model, which resembles features of depression. To this end, male animals exposed to RSD were injected with ketamine (20 mg/kg) or vehicle. A combination of behavioral analyses and PET scans of the inflammatory marker TSPO in the brain were performed. Rats submitted to RSD showed anhedonia-like behavior in the sucrose preference test, decreased weight gain, and increased TSPO levels in the insular and entorhinal cortices, as observed by [11C]-PK11195 PET. Whole brain TSPO levels correlated with corticosterone levels in several brain regions of RSD exposed animals, but not in controls. Ketamine injection 1 day after RSD disrupted the correlation between TSPO levels and serum corticosterone levels, but had no effect on depressive-like symptoms, weight gain or the protracted RSD-induced increase in TSPO expression in male rats. These results suggest that ketamine does not exert its effect on the hypothalamic-pituitary-adrenal axis by modulation of neuroinflammation

    Prenatal fluoxetine impairs non-hippocampal but not hippocampal memory in adult male rat offspring

    Get PDF
    Fluoxetine is often prescribed to treat depression during pregnancy. Rodent studies have shown that fluoxetine exposure during early development can induce persistent changes in the emotional behavior of the offspring. However, the effects of prenatal fluoxetine on memory have not been elucidated. This study evaluates the memory of adult male offspring from rat dams orally administered with a clinically relevant dose of 0.7 mg/kg fluoxetine from 9 weeks before pregnancy to 1 week before delivery. Hippocampal-dependent (Morris Water Maze, MWM) and non-hippocampal-dependent (Novel Object Recognition, NOR) memory paradigms were assessed. Anxiety- and depressive-like symptoms were also evaluated using the Open Field Test, Tail Suspension Test and Sucrose Preference Test. Male rats exposed to fluoxetine during gestation displayed NOR memory impairments during adulthood, as well as increased anxiety- and depressive-like symptoms. In the MWM, the offspring of fluoxetine-treated dams did not show learning deficits. However, a retention impairment was found on remote memory, 15 days after the end of training. Molecular analyses showed increased expression of NMDA subunit NR 2B , and a decrease in NR2A-to- NR2B ratio in the temporal cortex, but not in the hippocampus, suggesting changes in NMDA receptor composition. These results suggest that in utero exposure to fluoxetine induces detrimental effects on non-hippocampal memory and in remote retention of hippocampal-dependent memory, which is believed to be stored in the temporal cortex, possibly due to changes in cortical NMDA receptor subunit stoichiometry. The present results warrant the need for studies on potential remote memory deficits in human offspring exposed to fluoxetine in utero

    The Role of the Rodent Insula in Anxiety

    Get PDF
    The human insula has been consistently reported to be overactivated in all anxiety disorders, activation which has been suggested to be proportional to the level of anxiety and shown to decrease with effective anxiolytic treatment. Nonetheless, studies evaluating the direct role of the insula in anxiety are lacking. Here, we set out to investigate the role of the rodent insula in anxiety by either inactivating different insular regions via microinjections of glutamatergic AMPA receptor antagonist CNQX or activating them by microinjection of GABA receptor antagonist bicuculline in rats, before measuring anxiety-like behavior using the elevated plus maze. Inactivation of caudal and medial insular regions induced anxiogenic effects, while their activation induced anxiolytic effects. In contrast, inactivation of more rostral areas induced anxiolytic effects and their activation, anxiogenic effects. These results suggest that the insula in the rat has a role in the modulation of anxiety-like behavior in rats, showing regional differences; rostral regions have an anxiogenic role, while medial and caudal regions have an anxiolytic role, with a transition area around bregma +0.5. The present study suggests that the insula has a direct role in anxiety

    Neuropathic Pain Induces Interleukin-1β Sensitive Bimodal Glycinergic Activity in the Central Amygdala

    No full text
    Neuropathic pain reduces GABA and glycine receptor (GlyR)-mediated activity in spinal and supraspinal regions associated with pain processing. Interleukin-1β (IL-1β) alters Central Amygdala (CeA) excitability by reducing glycinergic inhibition in a mechanism that involves the auxiliary β-subunit of GlyR (βGlyR), which is highly expressed in this region. However, GlyR activity and its modulation by IL-1β in supraspinal brain regions under neuropathic pain have not been studied. We performed chronic constriction injury (CCI) of the sciatic nerve in male Sprague Dawley rats, a procedure that induces hind paw plantar hyperalgesia and neuropathic pain. Ten days later, the rats were euthanized, and their brains were sliced. Glycinergic spontaneous inhibitory currents (sIPSCs) were recorded in the CeA slices. The sIPSCs from CeA neurons of CCI animals show a bimodal amplitude distribution, different from the normal distribution in Sham animals, with small and large amplitudes of similar decay constants. The perfusion of IL-1β (10 ng/mL) in these slices reduced the amplitudes within the first five minutes, with a pronounced effect on the largest amplitudes. Our data support a possible role for CeA GlyRs in pain processing and in the neuroimmune modulation of pain perception

    The temporal dynamics of enhancing a human declarative memory during reconsolidation

    Get PDF
    When a consolidated memory is reactivated, it can become labile and prone to enhancement or disruption, a process known as reconsolidation. The reconsolidation hypothesis has challenged the traditional view that memories after consolidation are fixed and unchangeable. Recent studies suggest that the mechanisms mediating memory retrieval and the mechanisms that underlie the behavioral expression of memory can be dissociated, offering a new promise for the understanding of human memory persistence. Although reconsolidation studies typically use amnesic agents, it has also been shown that memory can be enhanced by pharmacological agents and real-life events during reconsolidation. Recently, we demonstrated that a mild stressor, cold pressor stress (CPS), can enhance human declarative memory during reconsolidation in a cued-recall test. Here we evaluate whether the recollection of 7- or 20-day-old long-term memories can be improved by exposure to two different neuromodulators: a mild stressor and glucose during reconsolidation. As expected, poor and very poor memory performance was found at the time of memory reactivation (days 6 and 20 after training). CPS during reconsolidation improved the long-term expression of a declarative memory 6 -but not 20-days after training. However, the administration of an oral source of glucose (juice), but not a diet juice, can enhance memory during reconsolidation even 20. days after training. Interestingly, when a recognition test was applied instead of a cued-recall test, memory performance was still robust at both 1 and 3. weeks after training. Here we show that the period in which this memory can be reactivated and become labile largely exceeds the period in which that memory is recalled, proving evidence that conscious access is not needed for reconsolidation. Present results are consistent with dissociation between the mechanisms mediating memory labilization and the mechanisms that underlie the behavioral expression of memory.Fil: Coccoz, Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Villalón Sandoval, Adolfo. Universidad Andrés Bello; ChileFil: Stehberg, Jimmy. Universidad Andrés Bello; ChileFil: Delorenzi, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentin
    corecore