
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322419575?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Chapter 9 

 

 

 
 

© 2012 Moraga-Amaro and Stehberg, licensee InTech. This is an open access chapter distributed under the 
terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 
properly cited. 

The Insular Cortex and the Amygdala:  

Shared Functions and Interactions 

Rodrigo Moraga-Amaro and Jimmy Stehberg 

Additional information is available at the end of the chapter 

http://dx.doi.org/10.5772/48495 

1. Introduction 

The Insular Cortex (IC) is a portion of the cerebral cortex folded deep within the lateral sulcus 

– in rodents surrounding the rhinal fissure - between the temporal and frontal lobes. The IC 

was first described by J.C. Reil in 1809 [1], after whom it received the name “the island of 

Reil”. Historically, the IC has been mentioned with several names, including “the central 

lobe”, “the fifth lobe”, “intersylvian convolutions” and “intralobular gyri” (reviewed in [2]). 

The most accepted subdivisions of the IC are the three regions described by Cecheto and Saper 

(1987) [3], based on the cytoarchitecture of its layers within the ventrodorsal plane. These 

include (1) the agranular insular cortex (AI) which surrounds the rhinal fissure and lacks a 

granular layer, (2) the dysgranular insular cortex (DI) which is located just dorsal to the rhinal 

fissure and contains a diffuse granular layer, and (3) the granular insular cortex (GI), situated 

just ventral to the secondary somatosensory cortex with a clear granular layer [3]. Each 

subdivision is believed to process particular sensory information. For example, the AI is 

believed to participate in nociceptive [4-6] and autonomic processing [3], the DI plays a role in 

gustatory processing [7, 8] and the GI has an important role in modulating visceral function [3].  

In the rostrocaudal plane, subdivisions of the IC are still controversial. Several studies 

suggest at least two regions - one posterior and the other rostral. Within the rostral, two 

more subdivisions are usually described: the posterior rostral (sometimes called “central”) 

and the anterior rostral.  

In rodents, particularly in the rat, the IC runs along the rostral half of the rhinal fissure. 

There is, to date, no consensus on the exact location of the border between the IC and the 

perirhinal cortex, which runs along the caudal half of the rhinal fissure. The rostral end of 

the IC corresponds to 2 mm of the anterior rostral portion, which runs roughly anterior to 

the bregma – anterior to the genu of the corpus callosum. It is mostly agranular and usually 

subdivided into 2 strips: dorsal and ventral [9]. 
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This anterior area is connected with the lateral frontal cortices and the motor thalamic nuclei 

[10] and receives projections mainly from the ventral part of the medial mediodorsal (MD), 

the parafascicular and central medial (CM) nuclei of the thalamus [11, 12], as well as with 

the motor-related amygdala regions [10], the locus coeruleus and the nucleus raphe  

magnus [4]. 

Posterior to this rostral agranular area is the central or posterior rostral portion, which 

includes the 3 main dorsoventral subdivisions described above [3]. 

The rat granular area is connected to the paraventricular [13], the visceral thalamic nucleus 

(the parvicellular division of the ventroposterior lateral nucleus of the thalamus, VPLpc; [3, 

11]), the gustatory thalamic nucleus (the parvicellular part of the ventroposterior medial 

nucleus of the thalamus, VPMpc;[10]), the reticular nucleus [14], the sustantia innominata 

[15], the ventromedial parts of somatosensory thalamic nucleus (the ventroposterior medial 

thalamic nucleus; VPM, [10]), the posterior thalamic complex (Po), and the central medial 

nucleus (CM)  of the thalamus [10, 16] as well as the medial parabrachial nucleus of the 

mesencephalon (PBN) and the nucleus of the solitary tract (NTS) [17-19]. Connections with 

the lateral hypothalamic area and the visceromotor regions in the brainstem including the 

vago-solitary complex have also been reported [17, 20, 21]. Cortically, it is connected with 

the primary somatosensory cortex (SI) and the secondary somatosensory cortex (SII), the 

infralimbic cortex [22], the caudate-putamen, the amygdala [23-27] and the bed nucleus of 

the stria terminalis (BNST, [19]).   

The dysgranular area is connected to the paraventricular [13] and the gustatory thalamus 

(VPMpc; [3, 10, 28, 29]), the medial PBN, the rostral NTS [19, 21] reticular nucleus of the 

thalamus [30], the somatosensory secondary (SII; [23]), the basolateral and central nuclei of 

the amygdala [23, 29, 31], the BST [20] and the lateral hypothalamic area [29].   

The more posterior part, which extends caudally from roughly 2 mm posterior to bregma 

[23], has been suggested to be involved in somatosensory functions, including pain [16, 32]. 

For a simplified scheme of IC connections, see Fig. 1. 

2. Functions of the insular cortex 

Following the reports on intraoperative recordings made by Penfield and colleagues 

showing that the IC is a viscerosensory and visceromotor region [33, 34], the old James–

Lange theory of emotions was revived. The James–Lange theory of emotions states that 

“bodily changes follow directly the perception of the exciting fact… our feeling of the same 

changes as they occur is the emotion… we feel sorry because we cry… afraid because we 

tremble” [35]. In other words, our nervous system responds to emotional experiences with 

physiological changes (e.g., a rise in the heart rate and dryness of the mouth), primarily 

mediated by the autonomic system (e.g., sympathetic responses) and the hypothalamus-

pituitary-adrenal axis. Emotions are the feelings that result from these physiological 

changes. Thus, the insula appears as a possible site where such autonomic responses and 

general bodily states are represented cortically at any given time.  
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Figure 1. Anatomical connections of taste and visceral areas of the insular corex 

Damasio´s somatic marker hypothesis suggests that such ever changing representations of 

bodily states are required for decision making [36], stored in the insula and other 

somatosensitive areas [36-39] and triggered by the amygdala or prefrontal cortex (as 

primary or secondary inducers, [39]). Thus, congruent with both the James-Lange theory of 

emotions and Damasio’s somatic marker hypothesis, the IC is believed to be the brain site 

where the representations of bodily states are created in response to emotional stimuli and 

which mediates interoceptive awareness and the subjective experience of feelings [38]. 

Support for this notion comes from a large number of recent studies in humans, monkeys 

and rodents, recently reviewed in [40]. Such studies include anatomical, 

electrophysiological, lesion, pharmacological and imaging studies, as well as operatory 

stimulation techniques which have yielded plausible roles for the IC in dozens of different 

functions. Several studies indicate that the IC is involved in taste processing [7, 8, 28, 41], 

viscerosensory information processing [3, 20, 26, 38, 42, 43], temperature and pain 

perception [44, 45], olfaction [46] auditory processing [47-49], somatosensory perception [49, 

50], drug craving [51], motor tasks [52] and post-stroke motor-recovery functions [53]. 

Studies in humans have suggested a role for the IC in the ability to feel our own heartbeat 

[54, 55], negative emotional states including pain [56], social exclusion [57] positive 

emotional states [58, 59], empathy [60, 61], cognitive control tasks [62] and speech [62, 63-

66]. All the above functions may have as a common denominator the IC as a possible 

correlate of awareness [66], while others have suggested that the role of the IC may be to 

respond to the perceived salience, novelty or unexpectedness of sensory events mediated by 

the representation of bodily reactions [67]. 
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In spite of the fact that complex cognitive functions, speech and self awareness are 

associated with humans and non-measurable in rodents, when IC functional maps of rats 

and humans are compared, the similarities are striking. In fact, the rat and human insular 

cortices have common functional areas - as shown in Figure 2 - which suggests a degree of 

convergence in overall IC functions (compiled from: Rat IC [7, 16, 23, 32, 45, 46, 68-70]; 

Human IC [71-75]). 

Insular dysfunction or hypofunction has also been associated with neurological disorders, 

such as frontotemporal dementia [76] and spatial neglect [77, 78], as well as with common 

neuropsychiatric disorders [79] such as schizophrenia [80, 81], depression [82, 83], autism [54, 

84], eating disorders [85], anxiety [86, 87], Parkinson´s disease [88, 89] and addiction [90]. 

 

Figure 2. Functional organization of the rat (a) and the human (b) Insular Cortex. Green represents 

auditory related functions. Yellow represents somatosensory related functions. Purple represents pain 

associated functions. Red represents cardiac related functions. Blue represents taste related functions. 

Grey represents cognitive functions and Cyan represents social related functions.  

Auditory (green), somatosensory (yellow), pain (purple), cardiovascular (red), taste (blue), cognitive 

(grey) and social (cyan) representations are shown within the insula. 

3. The primary viscerosensory cortex within the insular cortex 

Visceral sensory information reaches the IC from the lateral parabrachial nucleus, the 

nucleus of the solitary tract [18, 19, 21, 91] and the visceral thalamus (VPLpc) [68]. Although 

a clear map of the viscerosensory area of the IC is still missing, areas within both the 

dysgranular and granular cortices have been identified as viscerosensory responsive [3, 10, 

19, 92-94]. In Cechetto and Saper (1987) [3], a viscerosensory area within the Insular cortex 

was reported while exploring from 2.0 mm anterior to 0.5 mm posterior to the crossing of 

the anterior commissure (around the bregma) in rats. They found the majority of the 

baroreceptor-responsive units between +1.00 and -0.5 mm. Yasui and colleagues [27] 

explored the rat left insula between 3 mm anterior to 1 mm posterior to bregma and found 

viscerosensory responsive neurons to aggregate 0.5 mm around the anterior commissure. 

Zhang and Oppenheimer [94] found responsive cells throughout the rat insular cortex, as far 

rostral as +2.0 mm and as posterior as -1.5 mm from the bregma, with rightward 

predominance. In contrast, Shi and Casell (1998) found responsive cells throughout the rat 

insular cortex, but with leftward predominance [10, 23].  
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Unlike the visceromotor infralimbic cortex, the IC is usually considered viscerosensory [42, 95, 

96]. However, extensive evidence suggests that the IC may have direct motor functions. This 

idea is supported by major efferent projections from the IC to autonomic brain centres, 

including the lateral hypothalamic area, the parabrachial nucleus [20], the vago-solitary 

complex, the nucleus of the solitary tract [17, 21] and the central nucleus of the amygdala [24-

27, 97, 98]. Yasui and colleagues [27] reported that intrainsular microstimulation of the rostral 

part of the DI-GI induced increased arterial pressure and tachycardia, while stimulation of the 

caudal part produced a reduction of arterial pressure and bradycardia. Other studies have 

reported that electrical stimulation of the IC in mammals (including humans, non-human 

primates, cats, dogs and rodents) elicits changes in blood pressure, heart rate and respiratory 

frequency, respiratory arrest, gastric and bowel motility, gastric and abdominal sensations, 

nausea and vomiting [34, 49, 98-105]. There is evidence suggesting that this effect is direct 

where identified visceral insular efferents are linked to the autonomic effects of insular 

electrical stimulation [106], while it has also been reported that the IC is the main projection 

site of the cardiovascular depressor sites of the lateral hypothalamic area [107].  

The lateralization seen in electrophysiological studies has also been described after stroke 

models using middle cerebral artery occlusion (MCAO). Right MCAO-damage to the insula 

and adjacent frontoparietal cortex in rats, significantly increased blood pressure, renal 

sympathetic nerve activity and plasma norepinephrine levels was compared with left 

MCAO and controls [69, 108]. 

4. Taste–related behaviours 

The rat, like all other mammals, displays an innate fear for novel tastes (neophobia, [109]). 

This spontaneous behaviour limits the consumption of novel food until the rat's brain 

assesses its gastrointestinal effects. Provided that the tastant does not become associated 

with toxicosis, the consumption will increase on subsequent exposures to that same taste 

(attenuation of neophobia, i.e., familiarity). If, however, the consumption of the novel tastant 

results in visceral malaise, robust aversion specific to that tastant develops (conditioned 

taste aversion - CTA). This is one of the most robust paradigms used to study learning and 

is called conditioned taste aversion (CTA) [110, 111]. In the laboratory, a malaise-inducing 

agent - usually LiCl i.p. - is used to induce transient malaise in controlled CTA training. 

After a single exposure to a novel taste (conditioned stimulus - CS) and the subsequent 

injection of LiCl (unconditioned stimulus - US), the animal associates the malaise with the 

taste and acquires an aversion to it.  

In the case that the malaise follows the consumption of a familiar taste, the animal has to 

relearn that the familiar harmless taste is now associated with a malaise. This involves a 

process known as latent inhibition (LI - the decreased potency of a pre-exposed CS to be 

associated with an US) and produces, behaviourally, a lower aversion on a subsequent CTA 

to that taste [112-114]. 

A CTA memory can last for months if un-retrieved [115], but after repetitive exposures of 

the taste in the absence of the negative reinforcer, the animal relearns rapidly that the taste is 

not noxious and the memory is extinguished (experimental extinction [115-117]). 
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5. The gustatory system in the rat 

Gustatory information arrives from taste buds to the rostral pole of the nucleus of the 

solitary tract (NTS) from cranial nerves VII, IX and X [118]. From the NTS, both taste and 

viscerosensory neurons project to the parabrachial nucleus in the pons (PBN) [118, 119]. 

Gustatory neurons arrive mainly to the medial PBN (mPBN) [120-122] and visceral neurons 

to the lateral part (latPBN) [3, 18, 118], with some overlap [123].  

The PBN has been shown to be essential for the perception and learning of tastes (reviewed 

in [123]). Lesions on either the medial or lateral parts of the nucleus disrupt taste preference 

[120, 124], selective neophobia [125, 126], sodium appetite [127, 128] and CTA [121, 126-130]. 

From the mPBN the gustatory responsive neurons project to the gustatory thalamus (the 

VPMpc [3, 131]) and later reach the IC [3, 67, 132]. However, in contrast to other sensory 

systems (except olfaction) where sensory input reaches the thalamus before getting to the 

cortex, the gustatory system shows a direct connection between the mPBN and the IC that 

bypasses the thalamus [21]. The role of each of these connections remains unknown. Besides 

the PBN and the IC, the VPMpc sends and receives projections from the reticular nucleus of 

the thalamus [30] and from the amygdala [133], although the cells from the VPMpc that 

project to the amygdala are different to those that project to the IC [31]. There is still no 

consensus to date over the role of the VPMpc-IC or the VPMpc-amygdala pathways. 

Lesion studies have not been able to shed light into the functions of the VPMpc. Some 

studies have reported that VPMpc-lesioned animals retain a normal concentration response 

to preferred and non-preferred tastes [134-137] but may have disrupted [137], impaired [127, 

130] or else have no effects on CTA [134, 135, 138, 139]. Current views suggest a role in 

comparing novel and familiar tastes [140] in more complex gustatory learning tasks or in 

attention to gustatory function [135, 136, 141].   

6. The primary taste cortex within the insular cortex 

The gustatory area within the IC is localized in the dysgranular insular cortex [21, 29], 

roughly between the rhinal fissure and the medial cerebral artery (MCA) - an area that has 

also been identified in the rat as taste-responsive using intrinsic signal imaging [141] and 

electrophysiological recordings [7, 28, 69, 140, 142-144]. 

7. Role of the IC in taste function 

Lesions of the IC produce no perceptual deficits [145, 146] or effects on taste discrimination 

to preferred tastes [146, 147]. Moreover, recent evidence suggests that IC lesions after CTA 

lead to the original preference of the taste [148], which implies that IC may not have a role in 

modulating the original taste preference.  

Taste neophobia corresponds to the reluctance to try a novel food. IC lesions induce a 

consistent decrease in taste neophobia when the novel taste is presented in a familiar 

environment [146, 148-152]. As most studies so far have focused on taste memory, 
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pharmacological interventions into the IC are performed only after taste presentation and 

very few - if any - pharmacological studies have investigated the neurotransmitters involved 

in taste neophobia per se. 

When it comes to the role of the IC in taste familiarity, reports show an interesting duality. 

IC lesions appear to produce no effects on animals’ capacity to attain taste familiarity [151], 

but several reports document a role for the IC in taste familiarity learning as a result of 

pharmacological manipulations [153, 154], showing that taste familiarity requires 

cholinergic activity in the IC [155, 156] but that it is independent of NMDA and AMPA 

channel activity [157-160]. Perhaps this dichotomy can be explained either by compensation 

from other areas after IC lesions or, given the role of neophobia discussed above, it is 

possible that IC output per se may modulate familiarity. In the last case, lacking a 

neophobic/novelty output may not affect familiarity, but altering such output 

pharmacologically may affect a familiarity trace processed elsewhere, possibly at the PBN.  

8. Conditioned taste aversion 

A large number of studies using transient pharmacological manipulations of the gustatory 

IC have shown that the IC has a role in CTA to novel tastes [117, 161], familiar tastes (also 

known as latent inhibition) [155, 162] and the extinction of CTA [115, 117].  Interestingly, IC 

lesions only partially affect CTA acquisition [145, 146, 148, 149, 163] but, when performed 

after CTA learning, IC lesions completely disrupt CTA memory retention [143, 145, 146, 164, 

165] leading to the original preference for the taste [148]. This suggests that when an intact 

IC is present, it is not only involved in CTA acquisition and consolidation, but it may even 

be the site where CTA memories are stored (or else the capacity to retrieve them). The 

partial impairments seen when IC lesions are performed before CTA, on the other hand, 

suggest that such a seemingly crucial role for the IC in CTA can be compensated for when 

lacking IC. The area that can compensate for the lack of IC remains unidentified, although 

subcortical structures - including the PBN - have been proposed [166]. How can the IC be 

the site of memory acquisition and retention and yet be compensated almost completely? It 

is possible that the IC is part of a complex network of areas involved in aversive taste 

learning. A role for the amygdala in CTA acquisition (as will be discussed below), the 

redundancy seen in the direct PBN-IC, the PBN-VPMpc-IC and the PBN-amygdala-IC 

connections explained above, the possibility of attaining compensation from the olfactory 

system for the lack of taste proper and the possibility that IC lesions may induce unspecific 

taste aversion responses such as generalization, are some of the various possible hypotheses 

that have not been tested to date but which may explain this compensation.  

When an animal with an intact IC is CTA trained, CTA memories (or the capacity to retrieve 

them) are stored in the IC. This role in storage appears to be non-time-dependent [146], 

unlike hippocampal-dependent learning systems where hippocampal involvement in 

memory retention lasts for a limited time only [167-171].  

Determining whether IC lesions after CTA induce CTA retention deficits or a loss of the 

capacity to retrieve the memory is difficult to assess. Support for the idea that CTA 
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memories are stored in the IC come from a complete lack of spontaneous recovery in several 

pharmacological and lesion studies, whereas support for the idea that the IC is involved in 

retention but not the storage of CTA memory comes from studies by Bermudez-Rattoni and 

colleagues, showing that foetal implants into the IC can recover the capacity to retrieve 

previously acquired CTA [172-173]. 

It must be kept in mind that the perception of flavour requires an interaction between smell 

and taste [174]. IC lesions have also been shown to impair both CTA learning and taste-

potentiated odour aversion (POA) learning, suggesting that the IC may also have a role in 

the integration of odours, tastes and illness [147].  

Congruent with animal studies showing a role for the IC in taste function and taste-odour 

integration, reports from humans show that electrical microstimulation of the gustatory IC 

induces changes in gustatory function [175, 176] as well as different olfactory sensations [34]. 

In conclusion, the IC is not involved in taste perception or basic discrimination. The fact that 

IC lesions after CTA render complete amnesia implies that an intact IC is crucial for CTA 

memory retention or retrieval. Pharmacological manipulations affecting CTA memory 

consolidation, reconsolidation, extinction and latent inhibition, suggest that the IC is also 

involved in CTA acquisition.  

The evidence that IC lesions disrupt taste neophobia leading to the original preference of the 

taste but have no effect on taste familiarity, together with the fact that pharmacological 

manipulations of the IC affect familiarity and memory extinction, suggest a role for the IC in 

novelty and novelty-induced taste rejection. In fact, the IC has been suggested to be 

involved in reactions to the novelty and associative salience exclusive to taste stimuli [149]. 

A role for the IC in taste saliency and novelty is congruent with the majority of human studies 

reported for different IC functions, where a common denominator could be a role in the 

perceived salience, novelty or unexpectedness of sensory events mediated by the 

representation of bodily reactions [67], which could lead to self-awareness. In this sense, 

assuming that the output of the IC will eventually be turned into emotion, it is possible that 

the visceral and gustatory areas within the IC - together with other IC regions - create a bodily 

representation of taste perception, odour, autonomic responses, pain and somatosensory 

activation, visual and auditory stimulation, all of which are integrated to determine the 

salience of a given combination of sensory inputs and autonomic responses relevant to 

creating an emotion.  One must keep in mind that at any given time a huge amount of sensory 

information flows to the cortex (visual, auditory, tactile, pain, proprioception, taste and smell) 

together with a huge amount of information from autonomic functions, most of which change 

constantly to maintain body homeostasis. Thus, the bodily representation required for an 

emotion needs to be filtered out to only the most salient, novel and relevant information.  

9. The insula-amygdala network 

Anatomically, the IC and the amygdala are closely connected, both directly and through 

their main outputs and inputs (see figure 1). There are massive reciprocal connections 
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between the insular cortex and the amygdala [10, 23, 29, 177, 178] to all amygdalar 

subdivisions [179]. The ventral agranular insular area projects preferentially to the medial 

extended amygdala, while the viscerosensory and somatosensory portions of the insular 

cortex project preferentially to the central extended amygdala [180]. Furthermore, the 

amygdaloid projections from the posterior insular cortex appear to be organized in a 

feedforward parallel fashion targeting all levels of the intra-amygdaloid connections linking 

the lateral, basolateral and central nuclei [10, 23]. It must be noted that the PBN-insular 

cortex projections pass across the central nucleus of the amygdala [21]. Interestingly, Shi and 

Cassel (1998) [23] reported that cortical connections from the somatosensory secondary 

cortex to the IC may convey somatosensory information to the amygdala [23] and relay 

shock information to the BLA during fear conditioning [181]. 

All other main areas that are connected to the IC have reciprocal connections to the 

amygdala. The VPMpc projects to the amygdala [31, 132, 182] although the cells from the 

VPMpc that project to the amygdala are different from those that project to the IC [31]. The 

BNST also projects to the amygdala [20, 183], the LHA [20] and the PBN [18]. 

Within the PBN, the latPBN sends dense afferents to the central nucleus of the Amygdala 

(CeA) and more sparse afferents to the basolateral nucleus (BLA) and the lateral area (LAA), 

whilst the mPBN projects more densely to the BLA and LAA, but more scarcely to the CeA 

[18]. The lateral part of the BNST also receives inputs from the PBN and, from there, the 

BNST axons join those coming from the PBN and project together to the amygdala [18].  

Other PBN subnuclei also project to both the IC and the amygdala. The externo-lateral PBN 

(elPBN) receives both gustatory and visceral inputs and projects with a calcitonin-gene 

related peptide (CGRP) into the insular cortex ([184] and to the amygdala ([27, 185]). CGRP 

microinjections into the amygdala induce fear-like behaviour in absence of aversive stimuli 

[186] as well as with increased heart rate and arterial pressure [187]. 

10. The role of the amygdala in taste function 

The BLA has a crucial modulatory role in almost all memory tasks that include an emotion-

arousing component. For Pavlovian fear conditioning, the BLA is not only the site where 

memory consolidation takes place but is also the site of long-term memory storage (for a 

review, see [188, 189]). As for other learning tasks, such as inhibitory avoidance or CTA, the 

BLA is not the site of memory storage but rather it modulates the memory consolidation of 

those memories stored in other brain regions (for reviews, see [190-192].  

Dunn and Everitt (1988) [149] reported that BLA - but not CeA - lesions impair CTA. 

Furthermore, BLA lesions may impair taste neophobia [150] and arousal-induced taste 

neophobia, as well as passive avoidance [149]. Pharmacological BLA manipulations suggest 

a modulatory role in CTA after novel taste presentation, during visceral malaise and its 

association with the taste [193-197]. 

BLA stimulation affects IC neuronal responses [8] whereas BLA tetanic stimulation induces 

long-term potentiation in the ipsilateral IC [157, 158, 198]. Interestingly, induction of this 
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long-term potentiation in the BLA–IC projection before CTA training enhances memory 

retention [199].  

Other studies have suggested that CTA memory acquisition in the IC requires an intact BLA 

[200] and combined IC and BLA reversible or permanent lesions induce stronger CTA 

impairment than IC or BLA lesions alone [130, 193, 201-203]. 

Lesions in the BLA and LAA impair CTA moderately, but the combination of lesions of the 

VPMpc and the amygdala completely disrupts CTA [130, 204] and neophobia and induces 

weight loss [204]. Lesions of the amygdala have also been shown to produce the faster 

extinction of odour-taste (saccharin) association learning [205]. Moreover, transient 

pharmacological manipulations of the amygdala have been shown to impair CTA [140, 192, 

206-208] and suggest that CTA consolidation depends upon protein synthesis and requires 

CREB and cfos activation in the CeA [192, 206, 207], whereas extinction depends upon 

protein synthesis in the BLA [192]. Interestingly, neither amygdalar nucleus is involved in 

CTA memory reconsolidation [140, 208], which probably suggests that the amygdala is 

involved in CTA acquisition but not in CTA memory storage.  

Interactions of the amygdala with other brain regions have also been shown to be necessary 

for CTA. One study reported that lesions in the basal forebrain that deplete the neocortical 

innervation of acetylcholine (ACh), paired with lesions of the BLA, completely disrupt CTA, 

while each by itself may only impair learning [203, 209]. 

The amygdala has been well established as subserving fear and other emotional responses 

(reviewed in [188]). Together with other frontal cortical areas, it constitutes a major part of 

the so-called limbic system. Thus, it is possible that the role of the amygdala in taste function 

could be linked to the emotional and hedonic valence of gustatory stimuli in response to the 

salient bodily representation provided by the IC.  

11. Other amygdalar functions shared by the IC 

Ample evidence suggests that the amygdala can modulate memory consolidation in 

different memory systems through its many efferent projections to other brain regions [210]. 

Several reports show that the amygdala is involved in hippocampus-dependent (spatial or 

contextual) learning paradigms [211]. The basolateral complex of the amygdala (BLA; 

consisting of the lateral, basal and accessory basal nuclei) is critical for mediating the effects 

of stress on memory in several types of learning [212]. BLA also interacts with the IC in 

regulating taste neophobia [151, 20, 213] and, as mentioned earlier, CTA. 

Interestingly, the IC has also been reported to be involved in the memory consolidation of 

inhibitory avoidance [214] and object recognition memory [215] - both learning systems that 

have been shown to be modulated by the amygdala [216, 217]. As stated at the beginning of 

this chapter, in humans insula activation has been correlated to processing threats and 

seeing emotional images in patients with anxiety disorders [218, 219], contextual fear 

conditioning [220], negative emotional states, including pain [56, 221], and positive emotions 

[58, 59]. Interestingly, all of the above conditions have also been reported to activate the 
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amygdala [220-224]. As such, does the IC have shared functions with the amygdala? Do they 

interact? 

12. Insular cortex and amygdala interactions 

For learning and memory, extensive evidence suggests that the amygdala interacts with 

other brain regions, including the BNST, the nucleus basalis, the hippocampus and the 

entorhinal cortex (reviewed in [190, 225]).   

In CTA, studies have shown that learning is modulated by interactions between the 

amygdala and the IC. Ferreira and colleagues (2005) showed that the glutamatergic 

activation of the amygdala enhances CTA, an effect that can be blocked by the glutamatergic 

blockage of the IC [226]. 

Interactions between the insular cortex and the amygdala have been hinted at in some 

human studies [227]. In one of these, the over-activation of both areas was reported in 

patients with anxiety disorder [219], while in another study the ventral agranular 

frontoinsula was shown to co-activate with the amygdala in social–emotional paradigms 

[38, 45, 52, 228].  

As we have discussed before, IC activity has been correlated with several functions that also 

recruit amygdala activity. The fact that IC stimulation elicits cardiovascular responses is also 

not unique for the IC. In fact, electrical stimulation of the amygdala induces stress-related 

responses, including tachycardia and elevated arterial pressure as well as renal, intestine 

and skin vasoconstriction [229], while the stimulation of the CeA produces bradycardia, 

dilation of the pupils and movements of the mouth and tongue [230]. Furthermore, a study 

using single cell recordings of the amygdala in the cat reported that 46% of cells responded 

to carotid sinus nerve stimulation and that half of them responded to selective baroreceptor 

or chemoreceptor activation [231]. 

Other electrophysiological recordings have also shown that amygdala neurons respond to 

cardiovascular challenges. Cechetto and colleagues reported that over 23% of all recorded 

amygdala neurons responded to chemoreceptor activation and 16% to baroreceptor 

activation in cats [232]. In a different study, a cardiovascular pressure stimulus elicited 

predominantly inhibitory responses in one-half of amygdalar neurons. Most neurons in the 

central and basal nuclei responded to carotid chemoreceptor activation with excitation. 

Moreover, when testing responses to external sensory stimulation, 33% of recorded neurons 

responded to visual stimulation, 55% to acoustic, 39% to tactile and 59% to olfactory stimuli. 

Two-thirds of the neurons responded to more than one external sensory stimulus, 

demonstrating a convergence of sensory processing on single amygdalar neurons. Also, and 

as expected, 86% of recoded neurons responded to behavioural arousal [233]. 

So far, evidence seems to indicate that the IC and the amygdala share an enormous number 

of functions and properties. Although the idea that the IC is involved in creating bodily 

representations that are used by the amygdala to produce the correct emotional response is 

attractive, there is to date no real evidence that can distinguish the roles of either area. 
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Nevertheless, if we were to accept this model, where the role of the IC is to create and 

convey a bodily representation to the amygdala, which would be used to modulate and 

coordinate an emotional response to the stimulus, both the IC and the amygdala would be 

expected to receive direct autonomic and sensory information and to elicit cardiovascular 

responses. As such, the IC projections to the amygdala, together with the cortical 

connections from the somatosensory secondary cortex to the IC that convey somatosensory 

information to the amygdala [23], would relay the salient autonomic and sensory 

information needed to create an emotional response.  

The mode and timing of the IC-amygdala interaction remains elusive and has not been the 

subject of much research. In an fMRI study in cats, depressor cardiovascular challenges 

produced a decline of signal-intensity in the right insula and increased signal intensity in the 

amygdala [234]. By way of contrast, Williams and colleagues reported using fMRI in 

humans such that the initial perception of fearful faces induced, first, increased activity in 

the insula, then a greater engagement of the medial prefrontal cortex and, finally, activity in 

the left amygdala [235]. Does the IC-Amygdala interaction imply synergic activation? Or 

does it imply inhibition? Is the IC expected to be activated before the amygdala? According 

to the data so far, the presence of massive feedforward excitatory projections and the 

electrophysiological studies commented on throughout this chapter suggest reciprocal 

excitatory connections. Furthermore, according to the IC´s bodily representation-amygdala´s 

emotional response model, IC activation should precede that of the amygdala. To date, there 

is no conclusive evidence as to how this interaction takes place. Nevertheless, it is clear that 

in order to understand emotions we need to comprehend how the two of its major 

participants interact.   
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