15 research outputs found

    Adaptive auditory risk assessment in the dogbane tiger moth when pursued by bats

    Get PDF
    Moths and butterflies flying in search of mates risk detection by numerous aerial predators; under the cover of night, the greatest threat will often be from insectivorous bats. During such encounters, the toxic dogbane tiger moth, Cycnia tenera uses the received intensity, duration and emission pattern of the bat's echolocation calls to determine when, and how many, defensive ultrasonic clicks to produce in return. These clicks, which constitute an acoustic startle response, act as warning signals against bats in flight. Using an integrated test of stimulus generalization and dishabituation, here we show that C. tenera is able to discriminate between the echolocation calls characteristic of a bat that has only just detected it versus those of a bat actively in pursuit of it. We also show that C. tenera habituates more profoundly to the former stimulus train (‘early attack’) than to the latter (‘late attack’), even though it was initially equally responsive to both stimuli. Matched sensory and behavioural data indicate that reduced responsiveness reflects habituation and is not merely attributable to sensory adaptation or motor fatigue. In search of mates in the face of bats, C. tenera's ability to discriminate between attacking bats representing different levels of risk, and to habituate less so to those most dangerous, should function as an adaptive cost–benefit trade-off mechanism in nature

    Defective NDUFA9 as a novel cause of neonatally fatal complex I disease.

    No full text
    BACKGROUND: Mitochondrial disorders are associated with abnormalities of the oxidative phosphorylation (OXPHOS) system and cause significant morbidity and mortality in the population. The extensive clinical and genetic heterogeneity of these disorders due to a broad variety of mutations in several hundreds of candidate genes, encoded by either the mitochondrial DNA (mtDNA) or nuclear DNA (nDNA), impedes a straightforward genetic diagnosis. A new disease gene is presented here, identified in a single Kurdish patient born from consanguineous parents with neonatally fatal Leigh syndrome and complex I deficiency. METHODS AND RESULTS: Using homozygosity mapping and subsequent positional candidate gene analysis, a total region of 255.8 Mb containing 136 possible mitochondrial genes was identified. A pathogenic mutation was found in the complex I subunit encoding the NDUFA9 gene, changing a highly conserved arginine at position 321 to proline. This is the first disease-causing mutation ever reported for NDUFA9. Complex I activity was restored in fibroblasts of the patient by lentiviral transduction with wild type but not mutant NDUFA9, confirming that the mutation causes the complex I deficiency and related disease. CONCLUSIONS: The data show that homozygosity mapping and candidate gene analysis remain an efficient way to detect mutations even in small consanguineous pedigrees with OXPHOS deficiency, especially when the enzyme deficiency in fibroblasts allows appropriate candidate gene selection and functional complementation

    On indexing in the Web of Science and predicting journal impact factor

    Get PDF
    We discuss what document types account for the calculation of the journal impact factor (JIF) as published in the Journal Citation Reports (JCR). Based on a brief review of articles discussing how to predict JIFs and taking data differences between the Web of Science (WoS) and the JCR into account, we make our own predictions. Using data by cited-reference searching for Thomson Scientific’s WoS, we predict 2007 impact factors (IFs) for several journals, such as Nature, Science, Learned Publishing and some Library and Information Sciences journals. Based on our colleagues’ experiences we expect our predictions to be lower bounds for the official journal impact factors. We explain why it is useful to derive one’s own journal impact factor

    Heterozygous HNRNPU variants cause early onset epilepsy and severe intellectual disability

    No full text
    Contains fulltext : 174755.pdf (publisher's version ) (Closed access)Pathogenic variants in genes encoding subunits of the spliceosome are the cause of several human diseases, such as neurodegenerative diseases. The RNA splicing process is facilitated by the spliceosome, a large RNA-protein complex consisting of small nuclear ribonucleoproteins (snRNPs), and many other proteins, such as heterogeneous nuclear ribonucleoproteins (hnRNPs). The HNRNPU gene (OMIM *602869) encodes the heterogeneous nuclear ribonucleoprotein U, which plays a crucial role in mammalian development. HNRNPU is expressed in the fetal brain and adult heart, kidney, liver, brain, and cerebellum. Microdeletions in the 1q44 region encompassing HNRNPU have been described in patients with intellectual disability (ID) and other clinical features, such as seizures, corpus callosum abnormalities (CCA), and microcephaly. Recently, pathogenic HNRNPU variants were identified in large ID and epileptic encephalopathy cohorts. In this study, we provide detailed clinical information of five novels and review two of the previously published individuals with (likely) pathogenic de novo variants in the HNRNPU gene including three non-sense and two missense variants, one small intragenic deletion, and one duplication. The phenotype in individuals with variants in HNRNPU is characterized by early onset seizures (6/7), severe ID (6/6), severe speech impairment (6/6), hypotonia (6/7), and central nervous system (CNS) (5/6), cardiac (4/6), and renal abnormalities (3/4). In this study, we broaden the clinical and mutational HNRNPU-associated spectrum, and demonstrate that heterozygous HNRNPU variants cause epilepsy, severe ID with striking speech impairment and variable CNS, cardiac, and renal anomalies

    Fourteen new cases contribute to the characterization of the 7q11.23 microduplication syndrome.

    No full text
    Contains fulltext : 80644.pdf (publisher's version ) (Closed access)Interstitial deletions of 7q11.23 cause Williams-Beuren syndrome, one of the best characterized microdeletion syndromes. The clinical phenotype associated with the reciprocal duplication however is not well defined, though speech delay is often mentioned. We present 14 new 7q11.23 patients with the reciprocal duplication of the Williams-Beuren syndrome critical region, nine familial and five de novo. These were identified by either array-based MLPA or by array-CGH/oligonucleotide analysis in a series of patients with idiopathic mental retardation with an estimated population frequency of 1:13,000-1:20,000. Variable speech delay is a constant finding in our patient group, confirming previous reports. Cognitive abilities range from normal to moderate mental retardation. The association with autism is present in five patients and in one father who also carries the duplication. There is an increased incidence of hypotonia and congenital anomalies: heart defects (PDA), diaphragmatic hernia, cryptorchidism and non-specific brain abnormalities on MRI. Specific dysmorphic features were noted in our patients, including a short philtrum, thin lips and straight eyebrows. Our patient collection demonstrates that the 7q11.23 microduplication not only causes language delay, but is also associated with congenital anomalies and a recognizable face
    corecore