62 research outputs found
Оксид азота и нитритные ионы в энергетике нейронов мозжечка
Зниження вмісту АТФ в нейронах при гіпоксії мозку і гіперстимуляції глутаматних рецепторів здатне порушити систему внутри і міжклітинної сигналізації в нейронах мозку, зокрема іонний обмін, активність ферментів гліколізу і окислювального фосфорилірування, захоплення Са2+ мітохондріями і синтез білків. В даній роботі вивчали дію ендогенного глутамат індукованого NO і дію екзогенний доданих донорів NO – нітриту натрію (NaNO2) і нітрозоцистеїну (SNOC) на вміст АТФ в 7-8 денних культивованих нейронах мозочка.Decrease of content ATPA in neurones at a hypoxia of a brain and a hyperstimulation глутаматных receptors is capable to break system inside and the intercellular signal ystem in neurones of a brain, in particular an ion exchange, activity of enzymes of glycolysis and oxidative phosphorylation, seizure Са 2+ mitochondrions and synthesis of proteins. In the given work studied action endogenic glutamate inducted NO and action of exogenous padding donors NO diazotizing salt (NaNO2) and нитрозоцистеина (SNOC) on content ATPA in 7 8 diurnal cultivated{incubated} neurones of a cerebellum
Soliton molecules in trapped vector Nonlinear Schrodinger systems
We study a new class of vector solitons in trapped Nonlinear Schrodinger
systems modelling the dynamics of coupled light beams in GRIN Kerr media and
atomic mixtures in Bose-Einstein condensates. These solitons exist for
different spatial dimensions, their existence is studied by means of a
systematic mathematical technique and the analysis is made for inhomogeneous
media
Scattering of dipole-mode vector solitons: Theory and experiment
We study, both theoretically and experimentally, the scattering properties of
optical dipole-mode vector solitons - radially asymmetric composite
self-trapped optical beams. First, we analyze the soliton collisions in an
isotropic two-component model with a saturable nonlinearity and demonstrate
that in many cases the scattering dynamics of the dipole-mode solitons allows
us to classify them as ``molecules of light'' - extremely robust spatially
localized objects which survive a wide range of interactions and display many
properties of composite states with a rotational degree of freedom. Next, we
study the composite solitons in an anisotropic nonlinear model that describes
photorefractive nonlinearities, and also present a number of experimental
verifications of our analysis.Comment: 8 pages + 4 pages of figure
Stable vortex and dipole vector solitons in a saturable nonlinear medium
We study both analytically and numerically the existence, uniqueness, and
stability of vortex and dipole vector solitons in a saturable nonlinear medium
in (2+1) dimensions. We construct perturbation series expansions for the vortex
and dipole vector solitons near the bifurcation point where the vortex and
dipole components are small. We show that both solutions uniquely bifurcate
from the same bifurcation point. We also prove that both vortex and dipole
vector solitons are linearly stable in the neighborhood of the bifurcation
point. Far from the bifurcation point, the family of vortex solitons becomes
linearly unstable via oscillatory instabilities, while the family of dipole
solitons remains stable in the entire domain of existence. In addition, we show
that an unstable vortex soliton breaks up either into a rotating dipole soliton
or into two rotating fundamental solitons.Comment: To appear in Phys. Rev.
Human health and ocean pollution
Background: Pollution – unwanted waste released to air, water, and land by human activity – is the largest environmental cause of disease in the world today. It is responsible for an estimated nine million premature deaths per year, enormous economic losses, erosion of human capital, and degradation of ecosystems. Ocean pollution is an important, but insufficiently recognized and inadequately controlled component of global pollution. It poses serious threats to human health and well-being. The nature and magnitude of these impacts are only beginning to be understood. Goals: (1) Broadly examine the known and potential impacts of ocean pollution on human health. (2) Inform policy makers, government leaders, international organizations, civil society, and the global public of these threats. (3) Propose priorities for interventions to control and prevent pollution of the seas and safeguard human health. Methods: Topic-focused reviews that examine the effects of ocean pollution on human health, identify gaps in knowledge, project future trends, and offer evidence-based guidance for effective intervention. Environmental Findings: Pollution of the oceans is widespread, worsening, and in most countries poorly controlled. It is a complex mixture of toxic metals, plastics, manufactured chemicals, petroleum, urban and industrial wastes, pesticides, fertilizers, pharmaceutical chemicals, agricultural runoff, and sewage. More than 80% arises from land-based sources. It reaches the oceans through rivers, runoff, atmospheric deposition and direct discharges. It is often heaviest near the coasts and most highly concentrated along the coasts of low- and middle-income countries. Plastic is a rapidly increasing and highly visible component of ocean pollution, and an estimated 10 million metric tons of plastic waste enter the seas each year. Mercury is the metal pollutant of greatest concern in the oceans; it is released from two main sources – coal combustion and small-scale gold mining. Global spread of industrialized agriculture with increasing use of chemical fertilizer leads to extension of Harmful Algal Blooms (HABs) to previously unaffected regions. Chemical pollutants are ubiquitous and contaminate seas and marine organisms from the high Arctic to the abyssal depths. Ecosystem Findings: Ocean pollution has multiple negative impacts on marine ecosystems, and these impacts are exacerbated by global climate change. Petroleum-based pollutants reduce photosynthesis in marine microorganisms that generate oxygen. Increasing absorption of carbon dioxide into the seas causes ocean acidification, which destroys coral reefs, impairs shellfish development, dissolves calcium-containing microorganisms at the base of the marine food web, and increases the toxicity of some pollutants. Plastic pollution threatens marine mammals, fish, and seabirds and accumulates in large mid-ocean gyres. It breaks down into microplastic and nanoplastic particles containing multiple manufactured chemicals that can enter the tissues of marine organisms, including species consumed by humans. Industrial releases, runoff, and sewage increase frequency and severity of HABs, bacterial pollution, and anti-microbial resistance. Pollution and sea surface warming are triggering poleward migration of dangerous pathogens such as the Vibrio species. Industrial discharges, pharmaceutical wastes, pesticides, and sewage contribute to global declines in fish stocks. Human Health Findings: Methylmercury and PCBs are the ocean pollutants whose human health effects are best understood. Exposures of infants in utero to these pollutants through maternal consumption of contaminated seafood can damage developing brains, reduce IQ and increase children’s risks for autism, ADHD and learning disorders. Adult exposures to methylmercury increase risks for cardiovascular disease and dementia. Manufactured chemicals – phthalates, bisphenol A, flame retardants, and perfluorinated chemicals, many of them released into the seas from plastic waste – can disrupt endocrine signaling, reduce male fertility, damage the nervous system, and increase risk of cancer. HABs produce potent toxins that accumulate in fish and shellfish. When ingested, these toxins can cause severe neurological impairment and rapid death. HAB toxins can also become airborne and cause respiratory disease. Pathogenic marine bacteria cause gastrointestinal diseases and deep wound infections. With climate change and increasing pollution, risk is high that Vibrio infections, including cholera, will increase in frequency and extend to new areas. All of the health impacts of ocean pollution fall disproportionately on vulnerable populations in the Global South – environmental injustice on a planetary scale. Conclusions: Ocean pollution is a global problem. It arises from multiple sources and crosses national boundaries. It is the consequence of reckless, shortsighted, and unsustainable exploitation of the earth’s resources. It endangers marine ecosystems. It impedes the production of atmospheric oxygen. Its threats to human health are great and growing, but still incompletely understood. Its economic costs are only beginning to be counted. Ocean pollution can be prevented. Like all forms of pollution, ocean pollution can be controlled by deploying data-driven strategies based on law, policy, technology, and enforcement that target priority pollution sources. Many countries have used these tools to control air and water pollution and are now applying them to ocean pollution. Successes achieved to date demonstrate that broader control is feasible. Heavily polluted harbors have been cleaned, estuaries rejuvenated, and coral reefs restored. Prevention of ocean pollution creates many benefits. It boosts economies, increases tourism, helps restore fisheries, and improves human health and well-being. It advances the Sustainable Development Goals (SDG). These benefits will last for centuries. Recommendations: World leaders who recognize the gravity of ocean pollution, acknowledge its growing dangers, engage civil society and the global public, and take bold, evidence-based action to stop pollution at source will be critical to preventing ocean pollution and safeguarding human health. Prevention of pollution from land-based sources is key. Eliminating coal combustion and banning all uses of mercury will reduce mercury pollution. Bans on single-use plastic and better management of plastic waste reduce plastic pollution. Bans on persistent organic pollutants (POPs) have reduced pollution by PCBs and DDT. Control of industrial discharges, treatment of sewage, and reduced applications of fertilizers have mitigated coastal pollution and are reducing frequency of HABs. National, regional and international marine pollution control programs that are adequately funded and backed by strong enforcement have been shown to be effective. Robust monitoring is essential to track progress. Further interventions that hold great promise include wide-scale transition to renewable fuels; transition to a circular economy that creates little waste and focuses on equity rather than on endless growth; embracing the principles of green chemistry; and building scientific capacity in all countries. Designation of Marine Protected Areas (MPAs) will safeguard critical ecosystems, protect vulnerable fish stocks, and enhance human health and well-being. Creation of MPAs is an important manifestation of national and international commitment to protecting the health of the seas
Non-AIDS defining cancers in the D:A:D Study-time trends and predictors of survival : a cohort study
BACKGROUND:Non-AIDS defining cancers (NADC) are an important cause of morbidity and mortality in HIV-positive individuals. Using data from a large international cohort of HIV-positive individuals, we described the incidence of NADC from 2004-2010, and described subsequent mortality and predictors of these.METHODS:Individuals were followed from 1st January 2004/enrolment in study, until the earliest of a new NADC, 1st February 2010, death or six months after the patient's last visit. Incidence rates were estimated for each year of follow-up, overall and stratified by gender, age and mode of HIV acquisition. Cumulative risk of mortality following NADC diagnosis was summarised using Kaplan-Meier methods, with follow-up for these analyses from the date of NADC diagnosis until the patient's death, 1st February 2010 or 6 months after the patient's last visit. Factors associated with mortality following NADC diagnosis were identified using multivariable Cox proportional hazards regression.RESULTS:Over 176,775 person-years (PY), 880 (2.1%) patients developed a new NADC (incidence: 4.98/1000PY [95% confidence interval 4.65, 5.31]). Over a third of these patients (327, 37.2%) had died by 1st February 2010. Time trends for lung cancer, anal cancer and Hodgkin's lymphoma were broadly consistent. Kaplan-Meier cumulative mortality estimates at 1, 3 and 5 years after NADC diagnosis were 28.2% [95% CI 25.1-31.2], 42.0% [38.2-45.8] and 47.3% [42.4-52.2], respectively. Significant predictors of poorer survival after diagnosis of NADC were lung cancer (compared to other cancer types), male gender, non-white ethnicity, and smoking status. Later year of diagnosis and higher CD4 count at NADC diagnosis were associated with improved survival. The incidence of NADC remained stable over the period 2004-2010 in this large observational cohort.CONCLUSIONS:The prognosis after diagnosis of NADC, in particular lung cancer and disseminated cancer, is poor but has improved somewhat over time. Modifiable risk factors, such as smoking and low CD4 counts, were associated with mortality following a diagnosis of NADC
Recommended from our members
Cloning and partial sequence analysis of multiple P450 genes from the marine fish, Fundulus Heteroclitus
Diversity of cytochrome P450 2 family genes in non-mammalian vertebrates
The diversity and multiplicity of CYP2 genes in early diverging vertebrates were assessed using RT-PCR to identify sequences in an elasmobranch (dogfish:
Squalus acanthias), a teleost (scup:
Stenotomus chrysops), an amphibian (mudpuppy:
Necturus maculosus), a reptile (turtle:
Chrysemys picta) and a bird (chicken:
Gallus gallus). Sixteen novel sequences were amplified using total RNA from liver of dogfish, turtle, mudpuppy and chicken. Two turtle sequences, four mudpuppy sequences and one dogfish sequence clustered with frog CYP2Q and chicken CYP2H genes. One turtle sequence grouped with CYP2E. A new chicken CYP2 clustered with rat CYP2B, CYP2G and CYP2A and trout CYP2M. A dogfish sequence and a turtle sequence grouped with CYP2D and CYP2K. Eight additional sequences were amplified from scup liver, intestine, brain and heart; these all grouped in a CYP2J/2N/2P clade. One sequence,
prov. scup CYP2N3 (but possibly a CYP2N1 orthologue), was isolated from scup heart, gut, liver and brain. In the brain, cDNAs were amplified from the olfactory lobe, medulla, infundibulum and pituitary. One sequence was most highly expressed in the pituitary, where it may function in some aspect of hormonal control. Distinct CYP2P-related sequences were isolated from scup liver (
prov. CYP2P4) and heart (
prov. CYP2P5). Addition-al sequences from scup heart and brain RNA also grouped within this clade but could not be assigned to a subfamily. These results greatly expand the number of non-mammalian CYP2 genes known. Non-mammalian sequences may help to define CYP2 subfamily relationships and to identify conserved groups and functions. [Support: Sea Grant NA46RG0470, R/P60.
Cumulative effect of 5 daily sessions of theta burst stimulation on corticospinal excitability in amyotrophic lateral sclerosis
INTRODUCTION: Excitotoxicity plays an important role in the pathogenesis of the preferential motor neuron death observed in amyotrophic lateral sclerosis (ALS). Continuous theta burst stimulation (cTBS) by transcranial magnetic stimulation has an inhibitory effect on corticospinal excitability (CSE). We characterized the neurophysiological changes induced by cTBS in ALS. METHODS: The patients received 5 daily sessions of cTBS. CSE was assessed at baseline and after each session of cTBS. RESULTS: The amplitude of a single pulse motor evoked potential was significantly decreased (34%) over the days. The amplitude returned to baseline a week after the last session. The resting motor threshold increased significantly, whereas intracortical inhibition and facilitation did not change over the sessions. CONCLUSIONS: Daily cTBS has a cumulative depressing effect on CSE in patients with ALS. These results suggest that modulation of CSE in ALS is possible, but repetitive sessions are needed to maintain the effect
- …